

University of Kentucky [UKnowledge](http://uknowledge.uky.edu)

[University of Kentucky Master's Theses](http://uknowledge.uky.edu/gradschool_theses) [Graduate School](http://uknowledge.uky.edu/gradschool) Graduate School

2011

THE EFFECT OF LOOSE MIX AGING ON THE PERFORMANCE PROPERTIES OF WARM ASPHALTS

Thomas Martin Clements *University of Kentucky*, tmclem2@uky.edu

Recommended Citation

Clements, Thomas Martin, "THE EFFECT OF LOOSE MIX AGING ON THE PERFORMANCE PROPERTIES OF WARM ASPHALTS" (2011). *University of Kentucky Master's Theses*. 120. http://uknowledge.uky.edu/gradschool_theses/120

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [UKnowledge@lsv.uky.edu.](mailto:UKnowledge@lsv.uky.edu)

ABSTRACT OF THESIS

THE EFFECT OF LOOSE MIX AGING ON THE PERFORMANCE PROPERTIES OF WARM ASPHALTS

Recent improvements in warm mix asphalt technologies have spurred an aggressive adoption of these new practices within the asphalt paving industry. Concerns have arisen among federal and state agencies about the effects of this line of products on the performance of asphalt pavements. An investigation of the effects of lowering mixing, aging and compactions temperatures while varying the loose mix aging time was performed. Hamburg Wheel Tracking, Flow Number, Dynamic Modulus and Fracture Energy testing were used to evaluate mechanistic properties of the materials.

KEYWORDS: Asphalt, Pavements, Warm Mix Asphalt, Mechanistic Properties, Construction Materials

Thomas Martin Clements

May 4, 2011

THE EFFECT OF LOOSE MIX AGING ON THE PERFORMANCE PROPERTIES OF

WARM ASPHALTS

By

Thomas Martin Clements

 Kamyar C. Mahboub, Ph. D. *Director of Thesis*

 Kamyar C. Mahboub, Ph. D. *Director of Graduate Studies*

 May 4, 2011 *Date*

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master's degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature of each user.

THESIS

Thomas Martin Clements

The Graduate School

University of Kentucky

2011

THE EFFECT OF LOOSE MIX AGING ON THE PERFORMANCE PROPERTIES OF WARM ASPHALTS

THESIS __________________________________

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in the College of Engineering at the University of Kentucky

By

Thomas Martin Clements

Lexington, Kentucky

Director: Dr. Kamyar Mahboub, University of Kentucky, Lexington, KY

2011

Copyright© Thomas Martin Clements 2011

www.manaraa.com

DISCLAIMER

 The contents of this report reflect the views of the author, who is responsible for the facts and the accuracy of the data presented within. The contents do not necessarily reflect the official views and policies of the Federal Highway Administration (FHWA) of the Kentucky Department of Transportation (KYTC). The report does not constitute a standard, specification or regulation. Neither the authors nor the United States government endorse products or manufacturers. The names of companies or equipment manufacturers are included herein only because they are considered essential to the objectives of this report.

ACKNOWLEDGEMENTS

The following thesis would not have been possible without the support and assistance of many people. First, my Thesis Chair, Dr. Kamyar Mahboub, provided important ideas and reviews throughout the entire process. I also wish to think Phillip Blankenship and Mike Anderson from the Asphalt Institute, whose guidance and expertise in the testing laboratory was vital to my success in this process. Next, I wish to thank my Thesis Committee: Dr. Kamyar Mahboub, Dr.Constance Wood, and Dr.Paul Goodrum; without whose knowledge and assistance this study would not have been successful. I wish to express my gratitude towards my parents Patrick and Rita Clements; for their support throughout the duration of my studies. Finally, my work was jointly funded by the Asphalt Institute and the University of Kentucky and I appreciate their support.

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

Chapter 1: Introduction

Over the past several years concerns have arisen over emissions associated with hot mix asphalt production and placement and their role in climate change. In response to these concerns and rising energy cost, technologies which allow lower mixing and placement temperatures have garnered more attention. Hot Mix Asphalt (HMA) is typically produced at a mixing temperature between $280^{\circ}F(138^{\circ}C)$ and $320^{\circ}F(160^{\circ}C)$. This temperature is necessary to dry the aggregate, achieve adequate aggregate coating and to provide a sufficient amount of time for the mixed material to be transported and properly compacted. Warm Mix Asphalt (WMA) is the term used to describe the growing field of products and practices which lower the mixing/compaction temperatures of asphalt from $30^{\circ}F(16^{\circ}C)$ to as much as $100^{\circ}F(38^{\circ}C)$.

 This reduction in mixing and compaction temperatures provides many benefits for both the contractor and the environment. Lower mixing temperatures at the plant will reduce energy consumption and plant emissions. In addition to this, the lower compaction temperature could potentially allow for longer haul distances, improvements in late season paving quality, increases in plant and labor productivity and the possibility of adding more recycled asphalt pavement (RAP) to the mix. These benefits have been the driving force in the adoption of these relatively new technologies by the construction community.

 Although it is exciting to see the construction industry readily adopting new technologies, the knowledge base behind these products and processes is not sufficient considering the rapidly increasing rate at which they are being implemented.

1

There is reason to believe that lowering the mixing temperature of the asphalt mix could also improve pavement performance. Much of the aging of the asphalt binder occurs in the plant when it is exposed to elevated temperatures. Research has shown that the addition of additives which increase workability may also increase in-place density (Hurley and Prowell 2006). Increases in density have been shown to improve pavement performance (Rowe, et al. 2009) Additionally, lowering the mixing temperatures should cause the binder to experience less aging and undergo less oxidative hardening which should produce a more flexible pavement and could possibly extend the life of the pavement. The reduction of stiffness in the material although good for fatigue life, increases the materials susceptibility to rutting.

The goal of this research is to gain a greater understanding of the initial performance differences between regular HMA and WMA by conducting laboratory induced aging. This would allow a measured performance prediction for WMA.

In order to achieve this goal, hot and warm asphaltic concrete mixtures were tested in order to determine and compare their performance characteristics. Particular emphasis was placed on evaluating the stiffness, rutting potential and low-temperature fracture properties. Dynamic Modulus, Flow Number, Hamburg Wheel-Tracking, and Disk Shaped Compact Tension tests were selected. This suite of testing provides a good overall material characterization and met the approval of the Federal Highway Administration.

Copyright© Thomas Martin Clements 2011

Chapter 2: Literature Review

The literature review conducted in this research revealed that implantation of warm mix technology is becoming quite widespread. States, producers and contractors have shown a willingness to adopt these new technologies because of the potential benefits. The three primary means by which warm and hot mix asphaltic concretes have been compared are the production and materials costs, the amount of emissions released, and the differences in performance in both the field and in the laboratory.

2.1 Economics of WMA

At this point, the primary cost comparisons between WMA and HMA which have been researched are based on two factors: cost of additives/plant modifications, and the cost savings from the reduction in fuel consumption.

The estimated fuel cost savings per ton from Kristjánsdóttir's operational cost comparisons based on energy consumption and price (Kristjánsdóttir, et al. 2007) are summarized in the following table.

Fuel	$# 2$ Oil	Diesel	Natural Gas
Reduction in Fuel Use			
20%	$$1.00-S1.5$	$$0.88-S1.80$	$$0.38-S0.52$
35%	$$1.75 - 2.63	$$1.54 - 3.15	$$0.66 - 0.92
50%	$$2.50 - 3.75	$$2.20 - 4.50	$$0.94-S1.31$

Table 2.1: Estimated Fuel Cost Savings

The actual fuel cost savings will vary heavily on the fuel being used in the plant and the reduction in mixing temperature which can be achieved.

Middleton provides approximations for the costs of various additives in their research and puts the cost of most WMA additives between \$2.00 and \$4.00 per ton (Middleton and Forfylow 2008). Looking at the potential fuel cost savings and the costs

of current WMA technologies, the price of the WMA additives will be offset by or exceed the savings due to reductions in fuel consumption.

It should be noted that these studies do not account for possible but less quantifiable benefits of WMA such as: allowing for the addition of more recycled asphalt pavement in the mix, worker and plant productivity improvements, extended haul distances, possible reduction of compaction demand, and improved late season paving. It is possible that these additional benefits will outweigh the costs of the WMA additives for producers.

2.2 Emissions

The emissions data which have been collected suggest a consistent reduction in greenhouse gas emissions with the use of warm mix technologies. The extent, to which the emissions are reduced, like the fuel savings, is directly related to the temperature reductions in the plant (D'Angelo, et al. 2008).

The emissions reductions could also become a competitive advantage by allowing for the placement of asphalt plants in air quality non-attainment areas as declared by the Environmental Protection Agency, where they were previously prohibited. Furthermore, the plant would be more resilient to the effects of a carbon tax or cap and trade system if one were to be legislated.

2.3 Performance

As the asphalt industry continues to adopt new warm mix technologies there will be a continued need for research to evaluate these new products and processes through both field and laboratory testing.

One of the primary concerns with WMA materials is that they will increase the rutting potential of mixtures due to their reduced stiffness. Lab test have consistently indicated an increased potential for rutting which is particularly evident in Hamburg Wheel Tracking testing. Differences in dynamic modulus of WMA and HMA have for the most part shown no significant statistical differences (Hurley and Prowell 2006). Another concern is increased stripping susceptibility due to the potential for the presence of residual moisture in the mixtures caused by lower mixture production temperature. Thus far, limited laboratory studies have been completed which would accurately model this issue, largely due in fact to the use of dried aggregate within laboratory settings. Although tests have indicated an increased susceptibility to rutting and stripping, field trials are yet to be conducted (Button, Estakhri and Wmsatt 2007).

Copyright© Thomas Martin Clements 2011

Chapter 3: Materials Selection

The materials used in this study were chosen with the goal of providing an accurate representation of Kentucky asphalt highways with average annual traffic of less than 3 million Equivalent Single Axle Loads (ESAL). In order to accomplish this, a standard 9.5mm nominal maximum aggregate size mixture was selected as shown in Table 3.1. This mixture is commonly used as a surface layer by the Kentucky Transportation Cabinet and should produce a mix representative of many of Kentucky's pavements. A Performance Grade (PG) 64-22, which is the most common asphalt binder used in KY, was selected as the laboratory standard binder. By using the combination of 9.5mm nominal maximum aggregate size mixture and PG 64-22 asphalt binder, a representative Kentucky mixture was produced for initial laboratory testing.

The job mix formula chosen for the initial laboratory testing was a Kentucky Class 2 Asphalt Surface placed on non-primary routes with up to 3 million ESALS. The job mix formula was comprised of a combination of limestone from Harrod Stone in Frankfort and natural sand from Nugent Sand in Louisville. The aggregate combinations and job mix formula are presented in Table 3.1.

The Superpave type mixture was designed by Frankfort Testing Laboratory at 75 gyrations. The mixture design properties are provided in Table 3.2. The G_{mm} was verified using the PG 64-22 and determined to be 2.521. This G_{mm} was used for preparing the performance test specimens discussed later

		Percent of
Aggregate Type	G_{sb}	Total
Limestone #8's	2.700	25
Limestone Sand		
(Unwashed)	2.680	26
Limestone Sand		
(Washed)	2.690	34
Natural Sand	2.600	15
Sieve No.	Sieve Size,	Percent
	mm	Passing
$1/2$ "	12.5	100
3/8"	9.5	95
#4	4.75	73
#8	2.36	49
#16	1.18	32
#30	0.60	19
#50	0.30	10
#100	0.15	7
#200	0.075	6.0

Table 3.1: Aggregate Stockpile Percentages and JMF

The Kentucky Transportation Cabinet selected the type of WMA technology which was used in this study. The chemical additive which was selected reduces the temperatures generally required to overcome the difference in polarity between the aggregate and the asphalt (these temperatures are necessary to achieve adequate coating and allow for compaction), by the use of a surfactant. The surfactant achieves these results by reducing both the interfacial tension between the oil and aggregate and the surface tension of the oil. The chemical additive can be blended directly with the asphalt binder prior to mixing with the aggregate. This process required a very small change of procedure in the specimen production process. This product has similar advantages in HMA plants as it requires minimal modifications and currently offers one of the most significant temperature reductions on the market.

Copyright© Thomas Martin Clements 2011

Chapter 4: A Brief Description of Laboratory Protocols

In order to assure accuracy of experimental results a series of laboratory protocols were followed for mixture, specimen and individual test preparation. The following provides a brief description of those processes and protocols.

4.1 Mixture Preparation

Prior to mixing with aggregate, the binder was heated to the point at which it would flow and then poured from the 1.89L (5gal) container it arrived in into 0.95L (1qt) cans and allowed to cool. This was done for safety and convenience in the mixing process. Asphalt binder which was going have the WMA chemical added to it was later reheated to 130° C (266 $^{\circ}$ F) and the WMA chemical was added to the binder at 0.5% by weight of binder (in accordance with manufacturer specifications). The additive and binder were blended using the Ross Mixer. Asphalt and additive were blended at a speed of 1000 rpm for a period of 30 minutes to ensure complete blending of the additive. These specifications met the recommendations set forth by the manufacturer for preparing chemical treated binder.

Aggregate and asphalt were heated to 154° C (310^oF) and 132° C (270^oF) for the hot and warm mixes respectively. Blending was done at a speed of 40 rpm using the Binder-Aggregate mixer listed below, with the blending time ranging between 1-2 minutes depending on the time required to achieve adequate aggregate coating. 4.1.1 Mixture Preparation Equipment

Ross Mixer

The manufacturer's instruction for the blending of the WMA chemical additive required the use of an overhead mixer. The mixer used for blending the asphalt and

additive in this study was a ROSS HSM-100LC Mixer/Emulsifier. The mixer was equipped with a metal impeller to be used as the stirrer and was capable of a rotational speed between 500 and 10,000 rpm. The capacity of the mixing vessel was 0.95L (1qt). Binder-Aggregate Mixer

AASHTO T 312-09 "Preparing and Determining the Density of Hot Mix Asphalt Specimens by means of the Superpave Gyratory Compactor" allows the binder and aggregate to blended by hand or to be blended by a mechanical mixer. A Hobart A-120T Mixer was available for use at the Asphalt Institute and became the chosen method for mixing due to its ease of use and mixing consistency. The mixer had a maximum capacity of 11.36L (12qt) and was capable of a mixing speed between 30 and 200 rpm.

4.2 Specimen Preparation

To fabricate the specimens the Superpave Gyratory Compactor (SGC) was used at a constant height. The mass of the mix was varied from 7160 (15.79) to 7280g (16.04lb) to account for the effects of aging on the compaction of the mixtures. All specimens were compacted to an Air Voids of (6.5%-7.5%) in accordance with FHWA requests. The aggregates and asphalt were mixed and aged according to AASHTO R30, Mixture Conditioning of Hot-Mix Asphalt.

An aging and compaction temperature of 135°C (275°F) was used for the control mix while an aging and compaction temperature of $114^{\circ}C(240^{\circ}F)$ was used for the mix containing the chemical additive.

All specimens were compacted into a cylindrical shape with a height of 180mm (7.09in) and diameter of 150mm (5.91in) using the SGC, except those to be used for Hamburg Wheel Tracking testing. Hamburg Wheel Tracking test specimens were

compacted to 100mm (3.94in) in accordance with AASHTO T 324-04 "Hamburg Wheeltrack Testing of Compacted Hot Mix Asphalt" and required 2443g (5.39lb) of loose mix asphaltic concrete to meet air voids requirements. The number of gyrations necessary to compact the specimens varied from 20 to 60.

After specimens were compacted they were removed from the SGC, labeled, and allowed to cool for 24 hours prior to undergoing final preparations for their respective test.

After specimens were cut and cored into their testing configurations the air voids were obtained though AASHTO T 209 "Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt" and AASHTO T 166 "Bulk Specific Gravity of Hot Mix Asphalt Using Surface Saturated-Dry Specimens."

4.2.1 Equipment Used in Specimen Preparation

Superpave Gyratory Compactor

For compaction of the asphaltic mixtures the SGC was used. ASM T 312-09 "Preparing and Determining the Density of Hot Mix Asphalt Specimens by means of the Superpave Gyratory Compactor" specifies the requirements for the SGC. For this study a Pine model AFG1 SGC which conforms to these specifications was used.

The molds used for the compaction process had an internal diameter of 150mm (5.91in) and internal height of 250mm (9.84in). The SGC compacts the specimen by applying pressure perpendicular to the cylindrical axis of the specimen while gyrating at an angle throughout the compaction process.

Figure 4.1: Superpave Gyratory Compactor

4.3 Dynamic Modulus and Flow Number Testing

Dynamic modulus is a performance property used for characterization of viscoelastic materials which represents the ratio of the stress to the strain. For HMA mixes it is a useful property for evaluating the stiffness of a material and can be used in pavement and mix designs. Generally speaking, a higher dynamic modulus is associated with a stiffer asphalt layer which will show greater resistance to rutting but will be more susceptible to low temperature cracking.

The Flow Number is a material property which characterizes the resistance of the material to permanent deformation. Flow Number can be used to design asphalt pavements and mixes with resistance to rutting. The higher the Flow Number, the more rut resistant a mixture should be.

4.3.1 Dynamic Modulus Testing

The Asphalt Mixture Performance Tester (AMPT) dynamic modulus test was performed at 0.5, 2, 4, and 8hr aging periods as suggested by FHWA staff in this study.

The AMPT was developed though NCHRP 9-19 and 9-29 specifically for the purpose of running dynamic modulus, Flow Number and static creep test. The dynamic modulus test was performed at $4^{\circ}C$ (39 $^{\circ}F$), 20 $^{\circ}C$ (68 $^{\circ}F$), and $40^{\circ}C$ (104 $^{\circ}F$) and at different frequencies of 25, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1 Hz in accordance with AASHTO TP 62-03. Additional testing at 0.01 Hz was performed on specimens being tested at 40° C (104 $^{\circ}$ F) in order to better define the tail of the dynamic modulus master-curves. Four replicate samples were used for each testing condition.

The dynamic modulus (E^*) is defined as the ratio of the amplitude of the sinusoidal stress and the amplitude of the sinusoidal strain, as follows:

$$
|E^*| = \frac{\sigma}{\varepsilon}
$$

Where:

 σ = the amplitude of stress ϵ = the amplitude of strain

The dynamic modulus for each test condition is determined using the average amplitude of the haversine load from the load cell and the average deformation measured (strain) from each axial LVDT.

The procedure for dynamic modulus testing was as follows:

- 1. Cut and core the SGC compacted specimens to achieve the desired height of 150 +/- 2.5mm (5.91+/- 0.1in) and diameter of 100 +/- 0.5mm (3.94+/- 0.1in) required for AMPT dynamic modulus testing.
- 2. Determine the air voids in accordance with AASHTO T 166-07. Discard any specimen which does not meet the requirement of $7 +/-0.5\%$ air voids.

- 3. Attach the gauge points at equal intervals around the central axis of the specimen ensuring the gauge length is $70+/$ -1mm (2.76 +/- 0.04in).
- 4. Attach end platens and place Teflon friction reducers between the specimen and the end platens.
- 5. Stretch the latex membrane over the specimens and loading platens and secure using O-rings.
- 6. Place specimen in environmental chamber and allow specimen temperature to equilibrate for a minimum of 2hrs.
- 7. Turn on AMPT, set temperature and allow to equilibrate for one hour.
- 8. When specimen and testing chamber reach target temperature, transfer specimen to testing chamber and install LVDTs.
- 9. Allow testing chamber to return to desired temperature while entering test information into AMPT.
- 10. Start the test.
- 4.3.2 Flow Number Testing

The AMPT Flow Number tests were performed at 0.5, 2, 4, and 8hr aging periods as requested by FHWA. It should be noted that theses sample underwent no previous testing as it was found in (Rowe, et al. 2009) that sufficient strain was developed in dynamic modulus testing to invalidate Flow Number testing. For this study, a deviator stress of 600kPa (87Psi) and a five percent initial contact stress of 30kPa (4.4Psi) were used with no confining stress. These test conditions were selected because they are the same which were used in the NCHRP 9-29 interlaboratory study which evaluated the AMPT. All specimens were run to five percent total strain. A test temperature of

55°C (131°F) was selected using LTPPBind 98 percent reliable pavement temperature at 20mm (.79in) depth (LTTPBIND 2005). Four replicate samples were used for each testing condition. During testing the specimen is subjected to a repeated axial compressive load at a rate of 0.1 seconds every one second. The permanent axial deformation resulting from the loading is recorded with number of load cycles. The Flow Number is the number of cycles which correspond to the minimum rate of change in permanent axial deformation and is found by differentiating the axial strain as a function of loading cycles.

The procedure for Flow Number Testing was as follows:

- 1. Cut and core the SGC compacted specimens to achieve the desired height of 150 +/- 2.5mm (5.91+/- 0.1in) and diameter of 100 +/- 0.5mm (3.94+/- 0.1in) required for flow number testing.
- 2. Determine the air voids in accordance with AASHTO T 166-07. Discard any specimen which does not meet the air void requirement of $7 +/- 0.5\%$.
- 3. Attach end platens and place double greased Teflon friction reducers between the specimen and the end platens.
- 4. Place specimen in environmental chamber and allow specimen temperature to equilibrate for a minimum of 2hrs.
- 5. Turn on AMPT, set temperature and allow to equilibrate for one hour.
- 6. Allow testing chamber to return to desired temperature while entering test information into AMPT.
- 7. Start the test.

4.3.3 Equipment Used in Dynamic Modulus and Flow Number Testing Asphalt Mixture Performance Tester

Dynamic modulus and Flow Number tests were performed using the Asphalt Mixture Performance Tester (AMPT). The AMPT was developed though NCHRP 9-19 and 9-29 specifically for the purpose of running dynamic modulus, Flow Number and static creep test. The AMPT is an integrated hydraulic testing machine which combines an environmental chamber, hydraulic actuator and power pack, triaxial cell, and a control and data acquisition system in order to perform these tests (IPC Global 2010). The system performs these tests by applying a specific load at predetermined intervals and recording the reaction of the material.

The user inputs the desired loading rate, load, confining pressure, specimen dimensions, and temperature. The equipment measures the strain through three LVDTs attached to the specimen and can calculate dynamic modulus and Flow Number using this information.

4.4 Disk Shaped Compact Tension Testing

The disk-shaped compact tension test is a practical means by which to determine the low-temperature cracking properties of asphaltic concrete. The higher the fracture energy, the less likely the asphalt pavement is to have its service life reduced by cracking.

Disk-shaped compact tension test were performed at 0.5, 2, 4, and 8hr aging periods as suggested by the FHWA staff on this project. The testing temperatures were selected as -2^oC (28^oF), -12^oC (10^oF), and -22^oC (-7^oF) in accordance with ASTM D 7313-07. Tests were performed with a constant crack mouth opening displacement of 0.01667 mm/s (0.00066in/s) the load necessary to maintain this displacement rate was recorded. The test lasts until the load necessary to maintain this rate is reduced to 0.1KN (22.5lbf). Three replicate samples were used for each testing condition.

The fracture energy is determined by first plotting the load vs. the crack mouth opening displacement, and calculating the area under this curve which represents the total energy required to fail the specimen. By dividing the area under the curve by the surface area of the portion of the specimen which was under loading we are able to determine the fracture energy.

The Procedure for DC(t) testing was as follows.

- 1. Cut the SGC compacted specimen into two separate specimens with a thickness of $50+/5$ mm $(2+/0.2in)$.
- 2. Determine the air voids in accordance with AASHTO T 166-07. Discard any specimen which does not meet the air void requirement of $7 +1$ - 0.5%.
- 3. Notch and core the specimen in accordance with Figure 4.4.

- 4. Instrument the specimen then place in the environmental chamber and allow specimen temperature to equilibrate for a minimum of 2hrs.
- 5. Turn on environmental chamber and allow test apparatus and chamber to reach testing temperature.
- Force 25_{mn} Notch 150 mm 27.5 mm $25 \, \text{mm}$ Force 110 mm 35 mm
- 6. Insert specimen into loading fixtures and begin test.

Figure 4.3: DC(t) Test Specimen

4.4.1 Equipment Used in DC(t) Testing

Disk Shaped Compact Tension Loading Frame and Fixture

ASTM D 7313-07a "Standard Test Method for Determining Fracture Energy of Asphalt-Aggregate Mixtures Using the Disk-Shaped Compact Tension Geometry" specifies the requirements for the loading frame and fixture required to perform Disk

Shaped Compact Tension (DC(t)) testing. A Cox and Sons closed loop servo-hydraulic unit integrated with an environmental chamber and data acquisition and control system was used in correlation with Cox and Sons DC(t) testing fixture to perform the testing. This equipment met the requirements set forth by ASTM D 7313-07a for DC(t) testing. The system performs the test by straining the material at a set rate and recording the force necessary to maintain that rate. The user inputs the desired crack mouth opening displacement and the minimum load at which the test will stop. The machine outputs the force necessary to maintain the given displacement rate and the length of the test.

Figure 4.4: *Cox and Sons* DC(t) Loading Frame and Fixture

4.5 Hamburg Wheel Tracking Testing

Hamburg Wheel Tracking (HWT) testing is used to evaluate the mixtures susceptibility to premature failure as a result of inadequate binder stiffness, aggregate structure or moisture susceptibility.

HWT testing was performed at 0.5, 2, 4, and 8hr aging periods on WMA mixtures and at 0.5, 2, and 4hr aging periods on HMA mixtures as requested by FHWA. As suggested by KYTC staff on this project two replicate specimens were used to establish each data point. All tests were in accordance with AASHTO T 324-04 and performed at 64° C (147 $^{\circ}$ F) as suggested by KYTC.

The test is run by applying a reciprocating loaded steel wheel to a submerged specimen and recording the number of passes and the rut depth. Evaluating the rate at which the pavement ruts can reveal a pavements susceptibility to moisture damage and rutting.

The procedure for Hamburg Wheel Tracking testing was as follows.

- 1. Use plaster to rigidly mount the specimen into the mounting tray, then allow at least one hour to set.
- 2. Fill the wheel tracking device with water and adjust temperature as is necessary.
- 3. After the water temperature has been allowed to equilibrate for 30 minutes, lower the wheels onto the specimen.
- 4. Check that the average LVDT displacement is between 10 (0.4) and 18mm (0.7in), then begin test.

4.5.1 Equipment Used for Hamburg Wheel Tracking Testing

Hamburg Wheel Tracking Machine

HWTT was performed using a Hamburg Wheel Tracking machine. This equipment meets the requirements set for by AASHTO T 324-08 "Hamburg Wheel Track Testing for Hot Mix Asphalt" which specifies the requirements for a Hamburg Wheel Tracking machine. The Hamburg Wheel Tracking machine performs the test by continually rolling a loaded steel wheel over the specimen at a predetermined rate and measuring the rut depth using an LVDT while recording the number of passes. During the tests the samples are submerged in a temperature controlled bath. An overhead view of one side of a HWTT machine can be seen in Figure 4.5.

The user controls the testing temperature and the machine outputs the number of passes, time, and rut depths measured every 20 passes by LVDTs.

Figure 4.5: Overhead Diagram of One Side of Hamburg Wheel Tracking Machine

Copyright© Thomas Martin Clements 2011

Chapter 5: Analysis of Laboratory Data

5.1 Dynamic Modulus

The AMPT dynamic modulus test was performed on all specimens identified previously. This test was the result of the NCHRP 9-29 research (Bonaquist 2003). The dynamic modulus was determined at $4^{\circ}C(39^{\circ}F)$, $20^{\circ}C(68^{\circ}F)$, and $40^{\circ}C(104^{\circ}F)$ at different frequencies of 25 , 20 , 10 , 5 , 2 , 1 , 0.5 , 0.2 , 0.1 Hz in accordance with AASHTO TP 62-03. The dynamic modulus was also determined at 0.01 Hz on specimens which were tested at 40° C (104 $^{\circ}$ F) in order to better define the tail end of the dynamic modulus master-curves. The results of the dynamic modulus testing can be seen in Table 5.1. In addition, the percent differences were calculated between the dynamic modulus values at each give temperature and frequency and are displayed in Table 5.1.

$4^{o} C(39^{o}F)$ Test Temperature				Frequency						
	Aging Period (Hr)	25 Hz	20 Hz	10 _{Hz}	5 _{Hz}	2 Hz	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz
HMA	0.5	16350	15989	14881	13761	12266	11121	9967	8444	7343
WMA	0.5	15039	14708	13629	12545	11075	9940	8814	7356	6369
% Diff	0.5	8.35	8.35	8.78	9.25	10.21	11.22	12.28	13.77	14.21
HMA	2	15752	15379	14232	13097	11591	10463	9360	7919	6942
WMA	2	15364	15047	13950	12832	11338	10174	9047	7597	6618
% Diff	2	2.49	2.18	2.00	2.04	2.21	2.80	3.40	4.15	4.78
HMA	4	16682	16320	15200	14079	12591	11464	10333	8887	7866
WMA	4	14592	14322	13314	12279	10876	9803	8739	7401	6516
% Diff	4	13.37	13.04	13.23	13.66	14.62	15.62	16.72	18.25	18.77
HMA	8	17013	16662	15479	14298	12750	11586	10464	9044	8109
WMA	8	15506	15230	14259	13270	11934	10933	9912	8587	7650
% Diff	8	9.27	8.98	8.20	7.46	6.61	5.80	5.42	5.18	5.83

Table 5.1(a): Dynamic Modulus Data obtained from AMPT

(Positive percent difference values indicate a higher HMA value.)

20° C (68 $^{\circ}$ F) Test Temperature										
	Aging Period (Hr)	25 Hz	20 Hz	10 _{Hz}	5 _{Hz}	2 Hz	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz
HMA	0.5	7852	7493	6350	5305	4056	3232	2518	1774	1373
WMA	0.5	7936	7566	6436	5380	4136	3304	2566	1812	1400
% Diff	0.5	-1.06	-0.97	-1.35	-1.39	-1.97	-2.22	-1.89	-2.12	-1.95
HMA	$\overline{2}$	8719	8327	7186	6120	4819	3925	3131	2264	1754
WMA	2	8055	7672	6534	5484	4232	3394	2663	1892	1460
% Diff	2	7.92	8.19	9.49	10.96	12.96	14.50	16.16	17.91	18.28
HMA	4	9442	9063	7931	6838	5499	4594	3761	2805	2203
WMA	$\overline{4}$	8351	7994	6868	5812	4552	3711	2954	2125	1647
% Diff	4	12.27	12.53	14.36	16.23	18.85	21.28	24.04	27.60	28.88
HMA	8	9035	8623	7504	6442	5177	4325	3570	2718	2208
WMA	8	9034	8678	7561	6512	5231	4358	3548	2634	2063
% Diff	8	0.00	-0.64	-0.76	-1.07	-1.05	-0.77	0.63	3.14	6.77

Table 5.1(b): Dynamic Modulus Data obtained from AMPT

(Positive percent difference values indicate a higher HMA value.)

Table 5.1(c): Dynamic Modulus Output from AMPT

40° C(104 $^{\circ}$ F) Test Temperature								
	Aging Period (Hr)	25 Hz	20 Hz	10 Hz	5 _{Hz}	2 Hz		
HMA	0.5	1836	1696	1281	986	718		
WMA	0.5	1734	1607	1232	964	729		
% Diff	0.5	5.74	5.40	3.90	2.29	-1.41		
HMA	2	2311	2137	1635	1266	927		
WMA	$\overline{2}$	1882	1744	1334	1035	773		
% Diff	2	20.44	20.26	20.29	20.07	18.18		
HMA	4	2758	2559	1976	1521	1089		
WMA	$\overline{4}$	2031	1883	1430	1100	804		
% Diff	4	30.37	30.45	32.08	32.12	30.02		
HMA	8	2706	2539	1988	1538	1097		
WMA	8	2276	2130	1649	1284	948		
% Diff	8	17.27	17.52	18.60	18.01	14.65		

(Positive percent difference values indicate a higher HMA value.)

40° C(104 $^{\circ}$ F) Test Temperature									
	Aging Period (Hr)	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz	0.01 Hz			
HMA	0.5	1836	1696	1281	986	718			
WMA	0.5	1734	1607	1232	964	729			
% Diff	0.5	5.74	5.40	3.90	2.29	-1.41			
HMA	2	2311	2137	1635	1266	927			
WMA	2	1882	1744	1334	1035	773			
% Diff	2	20.44	20.26	20.29	20.07	18.18			
HMA	4	2758	2559	1976	1521	1089			
WMA	$\overline{4}$	2031	1883	1430	1100	804			
% Diff	4	30.37	30.45	32.08	32.12	30.02			
HMA	8	2706	2539	1988	1538	1097			
WMA	8	2276	2130	1649	1284	948			
% Diff	8	17.27	17.52	18.60	18.01	14.65			

Table 5.1(d): Dynamic Modulus Output from AMPT

(Positive percent difference values indicate a higher HMA value.)

As expected, the dynamic modulus values tended to increase as the aging period increaces. Additionally, the values for dynamic modulus are there highest at low temperatures/fast loading rates and lowest at the high temperature/slow loading rates, which is a typical trend of dynamic modulus values for asphalt in in these temperature and frequencies ranges. The values for dynamic modulus in the HMA and WMA mixes diverge from one another most significantly between 1 Hz at 20° C (68 $^{\circ}$ F) and 0.2 Hz at 40° C (104 $^{\circ}$ F) in the 2 and 4hr aging periods, with the HMA mix being much stiffer. This trend deserves attention because it is occuring at a range of temperatures and loading rates which a pavement would commonly experience.

The reduced dynamic modulus master curves are shown in Figure 5.1. The general form of the dynamic modulus master curve is a modified version of the dynamic modulus master curve equation included in the Mechanistic Empirical Design guide (AASHTO TP 62-03).

Figure 5.1(a): Comparison of the Shifted Dynamic Modulus Master Curves at the 0.5hr Aging Period

Figure 5.1(b): Comparison of the Shifted Dynamic Modulus Master Curves at the 2hr Aging Period

Figure 5.1(c): Comparison of the Shifted Dynamic Modulus Master Curves at the 4hr Aging Period

Figure 5.1(d): Comparison of the Shifted Dynamic Modulus Master Curves at the 8hr Aging Period

At the 0.5, 4, and 8hr loose mix aging periods the tail of the dynamic modulus master curves begins to diverge with the WMA mix maintaining a higher dynamic modulus as compared to the HMA mix. This portion of the graph should represent very slow loading or high temperature levels at which the mix should be aggregate controlled. The data would be expected to converge at this point while in fact the opposite appears to be happening.

Statistical analysis of the data set shown in Table 5.2 reveals that neither the aging time nor the reduction of mixing and compaction temperatures is a significant factor. This confirms the hypothesis that the HMA mechanical response is in fact controlled by the aggregate.

Table 3.2. I -values from General Emeal Modering of Dynamic Modulus Data										
4 ^o C Test Temperature			Frequency							
Factor	25 Hz	20 Hz	10 Hz	5 Hz	2 Hz					
Aging Time	0.2771	0.2289	0.1717	0.1219	0.0689					
Additive/Temp Reduction	0.0003	0.0003	0.0004	0.0004	0.0004					
Interaction	0.2816	0.2677	0.2480	0.2291	0.1935					
20° C Test Temperature										
Aging Time	0.0009	0.0005	0.0002	< 0.0001	< 0.0001					
Additive/Temp Reduction	0.0282	0.0273	0.0192	0.0134	0.0087					
Interaction	0.1030	0.0817	0.0514	0.0348	0.0209					
40° C Test Temperatures										
Aging Time	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001					
Additive/Temp Reduction	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0006					
Interaction	0.0381	0.0340	0.0257	0.0306	0.0586					

Table 5.2: P-values from General Linear Modeling of Dynamic Modulus Data

(Testing at 0.01 Hz was only performed at 40° C (104 $^{\circ}$ F) to better define the tail end of the dynamic modulus master curve.)

> $(\alpha = 0.05)$. If p-value < 0.05, it means there is a significant effect. If p-value > 0.05 , it means there is no significant effect.)

4 ^o C Test Temperature			Frequency		
Factor	1 Hz	0.5 Hz	0.2 Hz	0.1 Hz	0.01 Hz
Aging Time	0.0336	0.0147	0.0033	0.0005	N/A
Additive/Temp Reduction	0.0003	0.0002	0.0002	0.0001	N/A
Interaction	0.1667	0.1470	0.1327	0.1535	N/A
20° C Test Temperature					
Aging Time	< 0.0001	< 0.0001	< 0.0001	< 0.0001	N/A
Additive/Temp Reduction	0.0056	0.0022	0.0008	0.0020	N/A
Interaction	0.0149	0.0115	0.0085	0.0079	N/A
40° C Test Temperatures					
Aging Time	0.0009	0.0160	0.2145	0.5047	0.9018
Additive/Temp Reduction	0.0095	0.0885	0.6304	0.8027	0.1986
Interaction	0.1428	0.2948	0.5517	0.7810	0.8179

Table 5.2: P-values from General Linear Modeling of Dynamic Modulus Data Cont

(Testing at 0.01 Hz was only performed at 40° C (104 $^{\circ}$ F) to better define the tail end of the dynamic modulus master curve.)

 $(\alpha = 0.05$. If p-value < 0.05, it means there is a significant effect. If p-value > 0.05 , it means there is no significant effect.)

Table 5.2 displays wether or not aging time and the addition of the

additive/temperature reduction had a statistically significant effect (p-value < 0.05) on the

dynamic modulus at the given testing temperature and frequency.

The table shows an interaction between the reduction in temperatures and aging time at

approximately the same temeperatures and frequencies which would note the divergence

of the HMA and WMA dynamic modulus data.

The 0.5 and 8hr loose mix aging times produced mixes with little difference in their behavior. Mixes which were only aged for 0.5 hours likely did not experence enough aging for the material properties to diverge. The mixes which aged 8 hours could have experienced a "catch up" effect that is noted in Figure 5.2.

Dynamic modulus was plotted at $20^{\circ}C$ (68 $^{\circ}F$) at one Hz for the various aging periods as a means of comparison. This temperature and loading rate were selected for comparison because they represent a very common loading rate and temperature for pavements.

Figure 5.2: Dynamic Modulus Comparisons at 1Hz and 20°C (Each data point represents the average of four tests.) (Error bars represent standard error.)

The WMA and HMA mixes appear to be stiffening at a linear rate between 0.5 and 4 hours, with the HMA stiffening at a faster rate than the WMA. From 4 to 8 hours the WMA continues to stiffen at a linear rate while the HMA appears to experience limited additional aging, resulting in a "catch up" effect where the difference between the HMA and WMA dynamic modulus diminishes. A possible explanation for this can be found in the way which asphalt mixes typically stiffen as a result of aging. The stiffening tends to follow a logarithmic curve with the mix initially stiffening very rapidly before settling into a slower rate for the remainder of the aging.

Additional research investigating the rates at which warm and hot mixes age could add useful insight into this issue.

AMPT dynamic modulus testing also outputs phase angles for each modulus reading which can be found in Appendix A. These angles are used in calculating the storage and loss moduli, because our research was more focused on dynamic modulus and there were no significant trends in the phase angle data these values are not presented in the body of the report.

5.2 Flow Number Testing

A summary of Flow Number as a function of aging period and the addition of the chemical additive is summarized in Table 5.3 and Figure 5.3. The Flow Number was computed by the IPC software, version 1.41 (IPC Global 2010). The averaged data represents four samples per data point. According to AASHTO TP79, one can expect 10 percent coefficient of variance using four samples.

A similar relation can be found between aging period and potential rutting if the same test is run to a given strain, such as five percent permanent strain (50,000 micro-strain) and the ending cycles recorded. This relation can be seen in Figure 5.4.

	Flow Number Test at 56° C							
	Aging Period (Hr)	Flow Number	Cycles to 5% Perm. Strain					
HMA	0.5	26	62					
WMA	0.5	30	69					
HMA		35	87					
WMA		38	92					
HMA		42	108					
WMA		35	87					
HMA		79	195					
WMA		55	126					

Table 5.3: Flow Number Data Obtained from AMPT

Figure 5.3: Flow Number (FN) of the Mixes as a Function of Agining Period (Each data point represents the average of four tests.) (Error bars represent standard error.)

Figure 5.4: Cycles to 5% Permanent Strain Using the HMA and WMA Mixes as a Function of Aging Period (Each data point represents the average of four tests.) (Error bars represent standard error.)

Table 5.4: P-values from General Linear Modeling of Flow Number Data

 $(\alpha = 0.05$. If p-value < 0.05, it means there is a significant effect. If p-value > 0.05 , it means there is no significant effect.)

As would be expected, the rutting resistance represented by the Flow Number decreases in the WMA mix, the number of cycles to five permanent strain also decrease in the WMA mix. It should be noted that the Flow Number test is less accurate when testing softer materials (FN<100) which accounts for the high standard error experienced in these experiments. This is likely the cause of the reduced mixing/compaction temperature not showing up as a main factor (p-value<0.05) in the Flow Number testing statistical analysis. However, the significance of the interaction shows that it is a factor in the test results. The cycles to five percent permanent strain testing (which is a longer test) shows the reduced mixing/compaction temperature as a significant factor. As would be expected aging period was a significant factor in the performance of the mixture for both Flow Number and cycles five percent permanent strain testing, as increased aging increases the stiffness of the mixture.

Dynamic modulus testing indicated a "catch up" effect between the 4 and 8hr aging periods where the WMA stiffened at a faster rate than the HMA. The Flow Number testing contradicts this because the difference between the Flow Number values for the

HMA and WMA increases with additional aging. This would indicate that the HMA continues to stiffen at a faster rate than the WMA from 4 to 8hrs.

Coefficient of variation increased with the addition of the chemical additive and reduction in temperature from 12.8% to 21.9%. This is likely a result of the continued softening of the WMA which degrades the precision of the Flow Number testing, because it further shortens the test.

5.3 Disk Shaped Compact Tension Testing

Disk Shaped Compact Tension (DC(t)) testing was performed on the samples which were previously mentioned. The DC(t) test, ASTM D7313, was developed at University of Illinois-Urbana Champaign for the purpose of measuring mixtures properties of the thin core layers. Test temperatures of $-2^{\circ}C$ ($28^{\circ}F$), $-12^{\circ}C$ ($10^{\circ}F$), and 22° C (-7 $^{\circ}$ F) were selected based on current recommendations by University of Illinois which is 10°C higher than the anticipated low temperature binder grade supplied or required in a specific climate. Additional testing was performed at +/-10°C increments from the recommended temperature to provide a better model of the materials lowtemperature fracture characteristics.

Figure 5.5: Fracture Energies of HMA and WMA at -2^oC (28^oF) at Various Aging Periods (Each data point represents the average of three tests.) (Error bars represent standard error.)

At -2 $^{\circ}$ C (28 $^{\circ}$ F) testing the asphalt has not yet entered the quasi-brittle state. The

softer WMA mixes perform significantly better than the HMA mixes at this temperature

because of their increased ductility,

this is also the cause of the HMA mixes having a higher peak load at this temperature

which leads to a more brittle failure. A trend of decreasing fracture energy with increased

aging period, these trends can be seen in Figure 5.5.

As the mixes enter the quasi-brittle state in $-12^{\circ}C(10^{\circ}F)$ testing, the differences between the HMA and WMA mixes dimenish. There is also no significant difference between the different aging periods at these temperatures ($\alpha = 5\%$). In this testing, all mixes performed well and did not appear to have a pre-disposition to low temperature cracking.

Figure 5.7: Fracture Energies of HMA and WMA at -22 $^{\circ}$ C (-7 $^{\circ}$ F) at Various Aging Periods (Each data point represents the average of three tests.) (Error bars represent standard error.)

At -22 $\rm{^oC}$ (-7 $\rm{^oF}$) testing, the only significant difference appears to be peak load, with the HMA being greater than the WMA. This does not come as a surprise because the test may be approaching the low temperature craking point of the asphalt, and the WMA is likely softer and more ductile than the HMA.

In order to check the statistical significance of the results, general linear modeling is used to determine which factors have a significant impact on the testing results. Statistical significance was determined at $\alpha = 5\%$ level for this analysis. Table 5.8 shows whether or not individual factors were significant at different testing temperatures and aging periods.

Testing at -2 ^o C		
Factor	P-value	Details
Aging Time	0.0005	0.5 > 4 > 2 > 0.5
Additive/Temp Reduction	0.0182	WMA>HMA
Interaction	0.1744	
Testing at -12° C		
Aging Time	0.3099	
Additive/Temp Reduction	0.8538	
Interaction	0.2854	
Testing at -22°C		
Aging Time	0.9897	
Additive/Temp Reduction	0.2629	
Interaction	0.9770	

Table 5.8: General Linear Modeling for Fracture Energy

 $(\alpha = 0.05$. If p-value < 0.05, it means there is a significant effect. If p-value > 0.05 , it means there is no significant effect.)

Table 5.9: General Linear Modeling for Peak Load

Testing at -2 ^o C		
Factor	P-value	Details
Aging Time	.4126	
Additive/Temp Reduction	.0379	HMA>WMA
Interaction	.0959	
Testing at -12° C		
Aging Time	0.1340	
Additive/Temp Reduction	0.6286	
Interaction	0.3962	
Testing at -22°C		
Aging Time	0.5061	
Additive/Temp Reduction	0.0308	HMA>WMA
Interaction	0.2585	

 $(\alpha = 0.05$. If p-value < 0.05, it means there is a significant effect. If p-value > 0.05 , it means there is no significant effect.)

Table 5.8 confirms that the lower testing temperatures reduce the impact that aging period and temperature reductions have on the fracture energy. These trends correspond with data reported by (AMEC 2010).

Table 5.8 suggest that the chemical additive in the WMA allows for the lowering of the mixing and compaction temperatures by $31^{\circ}C(35^{\circ}F)$ without a significant effect on the low temperature performance. However, would appear to dispel the theory that the binder undergoes a grade shift to a lower critical low temperature and should therefore perform at a superior level at low tempratures.

5.4 Hamburg Wheel Tracking Testing

Hamburg Wheel-track testing was performed on the specimens identified previously. As recommended by KYTC two specimens were used to establish each data point. Hamburg Wheel Tracking testing evaluates the rutting and moisture susceptibility of the paving mixture. Tests were performed in accordance with AASHTO T 324 at 64°C $(147^{\circ}F)$ as requested by KYTC.

Figure 5.8 Comparisonn of HWT Rutting Rate at Varying Aging Periods (Each data point represents the average of both wheels used in HWT testing.) (Error bars represent standard error.)

Testing at 64° C		
Factor	P-value	Details
Aging Time	0.0009	HMA>WMA
Additive/Temp Reduction	0.0004	HMA>WMA
Interaction	0.0148	HMA>WMA
\bigcap \bigcap \bigcap \bigcap Λ Λ \sim Λ Λ \sim Λ	\cdot 1	\cdot or \cdot

Table 5.11: Gineral Linear Modeling for Hamburg Wheel Tracking Test

 $(\alpha = 0.05$. If p-value < 0.05, it means there is a significant effect. If p-value > 0.05 , it means there is no significant effect.)

The WMA performed significantly worse than the HMA at all loose mix aging times in the HWT testing. Lower performance in HWT testing should be expected when using WMA, since it is a softer mix. The reduced aging from the temperature reduction decreases dynamic modulus which should correspond to a less stiff material. The test temperature of 64° C (147 $^{\circ}$ F) is also significant because a PG 64-22 binder was tested. The lower temperatures at which WMA is produced may lower the effective grade of the binder making the 64°C test temperature higher than the effective PG of the WMA binder. HWT testing is normally run at 50° C (122 $^{\circ}$ F) for PG 64-22 binders, therefore

these test results can only be used for comparison between the control and warm mixes in this study. Both mixes failed before reaching the 10,000 passes required to pass a HWT test. It is possible that HWT testing is not a good indicator of field performance for WMA mixes. Currently TxDOT requires that WMA samples being used for HWT testing be aged for 4 instead of 2 hours at 135° C (275 $^{\circ}$ F). Although this increased aging temperature does not accurately represent plant conditions, rutting has not been an issue in WMA field tests (TxDOT 2006).Additional research into the use of HWT testing for charectirization of warm mix aspahalts would be useful.

Copyright© Thomas Martin Clements 2011

Chapter 6: Conclusions

The warm mix asphalt additive used in this experiment showed a significant amount of promise as a possible replacement for traditional HMA. Overall performance between the HMA and WMA was close, the reduction in mixing and compaction temperatures produces a more ductile mixture which will be more susceptible to rutting and less susceptible to low temperature fatigue related cracking. That being said both mixes performed at an acceptable level for a roadway with less than three million estimated single axis loads in all testing except for Hamburg wheel tracking. The following specific conclusions can be made based on this study.

- 1. The reduction in mixing and compaction temperatures and the chemical additive used in this experiment caused a reduction in the dynamic modulus of the material at all temperatures and loading rates, except for those less than 0.5 Hz at 40° C. This is significant because it represents the slowest loading rates/hottest temperatures where asphalt is typically the most susceptible to rutting. Generally, increasing the aging period corresponded with an increase in dynamic modulus, this trend did not hold true at the extremes of the testing temperatures and frequencies. This may be due to stiffness offered by the aggregate structure and brittleness of the binder at low temperatures or high frequencies.
- 2. The WMA had a greater fracture energy than the control at the $-2^{\circ}C(28^{\circ}F)$ testing, while the HMA had a higher peak load and failed in a more brittle manner at this temperature. There was also a decrease in fracture energy as both the HMA and WMA underwent longer aging periods, which might be due to aging induced brittleness. At -12^oC (10^oF) and -22^oC (-7.6^oF) testing there was no

41

significant difference in the fracture energy of the HMA and WMA mixes. However, at -22 $\rm{^oC}$ (-7.6 $\rm{^oF}$) testing the WMA had a lower peak load than the HMA.

3. The WMA did not perform as well as the HMA in rutting related testing. Flow Number and cycles to five percent permanent deformation were both affected by the reduction in mixing and compaction temperatures, however this is only shown to be main effect in the statistical analysis of the cycles to five percent permanent deformation testing. The Performance in these tests increased as the aging period was increased in both the WMA and HMA mixes. Hamburg Wheel-Tracking Testing performed at the critical high temperature of the binder at 64° C (147 $^{\circ}$ F) showed the WMA performing worse than the HMA. Neither mixture achieved an acceptable number of loading cycles for this testing, which is a result of the testing being run at the critical high temperature of the binder as opposed to the recommended 50° C (122 $^{\circ}$ F). It should be noted that field data have not shown any premature failure as a result of the use of Warm Mix Asphalts.

Copyright© Thomas Martin Clements 2011

Chapter 7: Recommendations for Future Research

- 1. WMA has consistently performed poorly on traditional testing for susceptibility to rutting (i.e. Hamburg Wheel Tracking and Flow Number); however, field studies have limited indications of increased rutting. Further research into the cause of an apparent lack of correlation between laboratory rutting data (Hamburg Wheel) and field performance is necessary.
- 2. The mix used in this research was designed for less traffic than highway type pavements would experience. That is, less than three million ESALs, for which there is currently no required minimum Flow Number in most states. Flow Number testing on a stronger aggregate structure would be useful. Additionally, the flow number test may not be a very effective test for soft asphalts (FN<100).
- 3. Fracture energy testing revealed that WMA performed better than or equal to HMA. However, the peak load at the critical low temperature was higher for the HMA mixtures. An investigation into the binder's role in fracture potential of the WMA would be useful.
- 4. This study suggests that the WMA mixtures are softer than the control HMA. Extraction and testing of binders from WMA mixtures could determine if the high temperature side of the performance grade should be adjusted. Future research could provide insight into mechanisms which may result in performance differences between WMA and conventional HMA.

Appendix A: Raw Experimental Data

Table of Contents

4° C (39 $^{\circ}$ F)									
WMA									
Aging Period	ID	Frequency (Hz)	25	20	10	5	\overline{c}		
	$\mathbf{1}$	Dynamic Modulus (MPa)	15651	15342	14270	13196	11743		
		Phase Angle (Degrees)	9.08	9.55	10.66	11.90	13.71		
	$\overline{2}$	Dynamic modulus (MPa)	14377	14074	13060	12024	10632		
		Phase angle (Degrees)	9.53	9.97	11.16	12.46	14.46		
0.5 _{hr}	3	Dynamic modulus (MPa)	15085	14739	13640	12520	10998		
		Phase angle (Degrees)	9.49	9.91	11.21	12.56	14.56		
	$\overline{4}$	Dynamic modulus (MPa)	15042	14678	13546	12441	10925		
		Phase angle (Degrees)	10.35	10.82	12.10	13.54	15.71		
	$\mathbf{1}$	Dynamic modulus (MPa)	15657	15332	14238	13105	11640		
		Phase angle (Degrees)	9.57	9.94	11.16	12.44	14.64		
	$\overline{2}$	Dynamic modulus (MPa)	14713	14441	13413	12364	10952		
2 ^{hr}		Phase angle (Degrees)	9.72	10.08	11.26	12.64	14.51		
	3	Dynamic modulus (MPa)	15906	15592	14472	13334	11808		
		Phase angle (Degrees)	9.34	9.79	10.95	12.24	14.11		
	$\overline{4}$	Dynamic modulus (MPa)	15181	14822	13677	12526	10951		
		Phase angle (Degrees)	10.07	10.55	11.83	13.21	15.25		
	1	Dynamic modulus (MPa)	14849	14619	13711	12783	11467		
		Phase angle (Degrees)	8.77	9.21	10.24	11.39	13.08		
	$\overline{2}$	Dynamic modulus (MPa)	16025	15651	14430	13212	11638		
4hr		Phase angle (Degrees)	10.16	10.51	11.70	13.00	14.91		
	3	Dynamic modulus (MPa)	13571	13209	12142	11077	9693		
		Phase angle (Degrees)	10.69	11.11	12.34	13.78	15.85		
	$\overline{4}$	Dynamic modulus (MPa)	13921	13809	12972	12044	10706		
		Phase angle (Degrees)	9.76	10.17	11.38	12.64	14.62		
	$\mathbf{1}$	Dynamic modulus (MPa)	14785	14544	13705	12840	11676		
		Phase angle (Degrees)	8.09	8.46	9.35	10.27	11.69		
	$\overline{2}$	Dynamic modulus (MPa)	15696	15433	14469	13482	12164		
8hr		Phase angle (Degrees)	8.54	8.89	9.85	10.91	12.50		
	3	Dynamic modulus (MPa)	N/A	N/A	N/A	N/A	N/A		
		Phase angle (Degrees)	N/A	N/A	N/A	N/A	N/A		
	$\overline{4}$	Dynamic modulus (MPa)	16036	15713	14604	13488	11963		
		Phase angle (Degrees)	8.98	9.36	10.39	11.51	13.18		

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT

		4° C (39 $^{\circ}$ F)				
		WMA				
Aging Period	ID	Frequency (Hz)	$\mathbf{1}$	0.5	0.2	0.1
0.5 _{hr}	$\mathbf{1}$	Dynamic modulus (MPa)	10600	9483	8001	6967
		Phase angle (Degrees)	15.25	16.98	19.53	21.44
	$\overline{2}$	Dynamic modulus (MPa)	9569	8497	7126	6190
		Phase angle (Degrees)	16.19	18.13	20.92	23.01
	3	Dynamic modulus (MPa)	9841	8715	7235	6254
		Phase angle (Degrees)	16.30	18.17	20.78	22.80
	$\overline{4}$	Dynamic modulus (MPa)	9749	8559	7060	6065
		Phase angle (Degrees)	17.55	19.64	22.57	24.86
	$\mathbf{1}$	Dynamic modulus (MPa)	10464	9318	7864	6803
		Phase angle (Degrees)	16.38	17.57	20.32	22.39
	$\overline{2}$	Dynamic modulus (MPa)	9869	8812	7425	6467
		Phase angle (Degrees)	16.24	17.92	20.50	22.32
2hr	3	Dynamic modulus (MPa)	10621	9476	7985	7002
		Phase angle (Degrees)	15.72	17.47	20.04	21.85
	$\overline{4}$	Dynamic modulus (MPa)	9740	8581	7115	6201
		Phase angle (Degrees)	16.94	18.79	21.49	23.32
	$\mathbf{1}$	Dynamic modulus (MPa)	10465	9425	8102	7198
		Phase angle (Degrees)	14.54	16.15	18.52	20.22
	$\overline{2}$	Dynamic modulus (MPa)	10435	9206	7716	6707
4hr		Phase angle (Degrees)	16.53	18.32	20.92	22.71
	3	Dynamic modulus (MPa)	8654	7702	6474	5681
		Phase angle (Degrees)	17.55	19.45	22.00	23.89
	$\overline{4}$	Dynamic modulus (MPa)	9656	8624	7313	6477
		Phase angle (Degrees)	16.26	18.09	20.61	22.37
	$\mathbf{1}$	Dynamic modulus (MPa)	10816	9914	8682	7797
		Phase angle (Degrees)	12.93	14.33	16.40	18.10
	$\overline{2}$	Dynamic modulus (MPa)	11151	10114	8786	7844
		Phase angle (Degrees)	13.86	15.40	17.66	19.32
8hr	3	Dynamic modulus (MPa)	N/A	N/A	N/A	N/A
		Phase angle (Degrees)	N/A	N/A	N/A	N/A
	$\overline{4}$	Dynamic modulus (MPa)	10832	9709	8293	7308
		Phase angle (Degrees)	14.57	16.15	18.42	20.13

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

20° C (68 $^{\circ}$ F)									
WMA									
Aging Period	ID	Frequency (Hz)	25	20	10	5	2		
	$\mathbf{1}$	Dynamic Modulus (MPa)	8390	7969	6789	5707	4416		
		Phase Angle (Degrees)	20.34	21	23.32	25.66	28.77		
	$\overline{2}$	Dynamic Modulus (MPa)	7514	7195	6111	5071	3873		
		Phase Angle (Degrees)	21.26	21.9	24.37	26.79	29.87		
0.5 _{hr}	3	Dynamic Modulus (MPa)	8085	7729	6623	5578	4305		
		Phase Angle (Degrees)	20.69	21.29	23.4	25.51	28.34		
	$\overline{4}$	Dynamic Modulus (MPa)	7754	7372	6221	5162	3950		
		Phase Angle (Degrees)	21.31	21.89	24.43	27.05	30.4		
	$\mathbf{1}$	Dynamic Modulus (MPa)	7767	7409	6308	5275	4044		
		Phase Angle (Degrees)	21.2	21.75	24	26.22	29.08		
	$\overline{2}$	Dynamic Modulus (MPa)	7654	7305	6215	5208	4018		
2 ^{hr}		Phase Angle (Degrees)	21.1	21.7	23.98	26.2	29.16		
	3	Dynamic Modulus (MPa)	8789	8362	7155	6040	4703		
		Phase Angle (Degrees)	19.82	20.45	22.7	24.98	28.01		
	$\overline{4}$	Dynamic Modulus (MPa)	8008	7610	6459	5411	4163		
		Phase Angle (Degrees)	20.87	21.5	23.81	26.12	29.15		
	1	Dynamic Modulus (MPa)	8427	8095	6992	5951	4702		
		Phase Angle (Degrees)	19.27	19.89	22.06	24.23	27.07		
	$\overline{2}$	Dynamic Modulus (MPa)	8501	8071	6904	5838	4558		
4hr		Phase Angle (Degrees)	20.04	20.72	22.88	25.03	27.92		
	3	Dynamic Modulus (MPa)	7631	7295	6225	5210	4044		
		Phase Angle (Degrees)	20.64	21.31	23.53	25.85	28.89		
	$\overline{4}$	Dynamic Modulus (MPa)	8843	8516	7352	6247	4903		
		Phase Angle (Degrees)	19.26	19.94	22.14	24.39	27.25		
	$\mathbf{1}$	Dynamic Modulus (MPa)	9030	8753	7714	6680	5424		
		Phase Angle (Degrees)	17.42	18.06	19.93	21.89	24.43		
	$\overline{2}$	Dynamic Modulus (MPa)	8901	8581	7486	6458	5171		
8hr		Phase Angle (Degrees)	18.42	19	21.05	23.15	25.92		
	3	Dynamic Modulus (MPa)	N/A	N/A	N/A	N/A	N/A		
		Phase Angle (Degrees)	N/A	N/A	N/A	N/A	N/A		
		Dynamic Modulus (MPa)	9172	8700	7483	6397	5098		
	4	Phase Angle (Degrees)	18.58	19.16	21.19	23.22	25.97		

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

		20° C (68 $^{\circ}$ F)				
		WMA				
Aging Period	ID	Frequency (Hz)	1	0.5	0.2	0.1
	$\mathbf{1}$	Dynamic Modulus (MPa)	3546	2784	1978	1523
		Phase Angle (Degrees)	30.92	32.91	34.3	34.64
	$\overline{2}$	Dynamic Modulus (MPa)	3076	2350	1670	1304
0.5 _{hr}		Phase Angle (Degrees)	31.94	33.42	34.86	34.74
	3	Dynamic Modulus (MPa)	3438	2674	1883	1455
		Phase Angle (Degrees)	30.37	32.28	33.79	33.88
	$\overline{4}$	Dynamic Modulus (MPa)	3156	2454	1715	1317
		Phase Angle (Degrees)	32.65	34.49	35.95	35.82
	$\mathbf{1}$	Dynamic Modulus (MPa)	3225	2517	1796	1414
		Phase Angle (Degrees)	31.07	32.86	34.04	33.98
	$\overline{2}$	Dynamic Modulus (MPa)	3223	2534	1810	1418
2 ^{hr}		Phase Angle (Degrees)	31.11	32.85	34.16	34.09
	3	Dynamic Modulus (MPa)	3799	2997	2120	1583
		Phase Angle (Degrees)	30.18	32.04	34.21	35.55
	$\overline{4}$	Dynamic Modulus (MPa)	3330	2603	1841	1425
		Phase Angle (Degrees)	31.24	32.89	34.43	34.4
	1	Dynamic Modulus (MPa)	3858	3104	2265	1784
		Phase Angle (Degrees)	29.09	30.83	32.82	33.6
	$\overline{2}$	Dynamic Modulus (MPa)	3694	2931	2100	1634
4hr		Phase Angle (Degrees)	29.94	31.74	33.69	34.22
	3	Dynamic Modulus (MPa)	3275	2595	1852	1443
		Phase Angle (Degrees)	30.86	32.71	34.2	34.64
	$\overline{4}$	Dynamic Modulus (MPa)	4015	3185	2282	1727
		Phase Angle (Degrees)	29.29	31.2	33.25	34.36
	$\mathbf{1}$	Dynamic Modulus (MPa)	4578	3762	2829	2240
		Phase Angle (Degrees)	26.23	28.02	30.25	31.48
	$\overline{2}$	Dynamic Modulus (MPa)	4284	3479	2580	2020
8hr		Phase Angle (Degrees)	27.99	29.91	32.05	33.01
	3	Dynamic Modulus (MPa)	N/A	N/A	N/A	N/A
		Phase Angle (Degrees)	N/A	N/A	N/A	N/A
		Dynamic Modulus (MPa)	4212	3402	2493	1930
	$\overline{4}$	Phase Angle (Degrees)	27.98	29.97	32.27	33.39

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

40° C (104 $^{\circ}$ F)									
WMA									
Aging Period	ID	Frequency (Hz)	25	20	10	5	$\overline{2}$		
0.5 _{hr} 2 ^{hr} 4hr	$\mathbf{1}$	Dynamic Modulus (MPa)	1959	1798	1366	1057	787		
		Phase Angle (Degrees)	34.9	34.64	34.25	32.66	29.31		
	$\overline{2}$	Dynamic Modulus (MPa)	1626	1510	1159	909.1	688		
		Phase Angle (Degrees)	36.53	35.72	34.64	32.35	28.62		
	3	Dynamic Modulus (MPa)	1590	1481	1147	906.2	696.1		
		Phase Angle (Degrees)	37.52	36.55	34.88	32.18	28.19		
	$\overline{4}$	Dynamic Modulus (MPa)	1759	1639	1254	982.4	743.1		
		Phase Angle (Degrees)	37.58	36.7	35.35	32.86	29.05		
	1	Dynamic Modulus (MPa)	1936	1798	1374	1062	787.6		
		Phase Angle (Degrees)	36.77	35.9	35.12	33.52	30.34		
	$\overline{2}$	Dynamic Modulus (MPa)	1795	1666	1284	1009	765.7		
		Phase Angle (Degrees)	35.47	34.69	33.75	31.74	28.3		
	3	Dynamic Modulus (MPa)	2027	1877	1429	1097	806.3		
		Phase Angle (Degrees)	36.92	36.2	35.72	34.23	31.08		
	$\overline{4}$	Dynamic Modulus (MPa)	1770	1633	1249	973.3	731.8		
		Phase Angle (Degrees)	36.16	35.57	34.65	32.53	28.92		
	$\mathbf{1}$	Dynamic Modulus (MPa)	2186	2033	1548	1183	856.5		
		Phase Angle (Degrees)	35.91	35.35	35.4	34.46	31.99		
	$\overline{2}$	Dynamic Modulus (MPa)	2094	1940	1470	1128	822.6		
		Phase Angle (Degrees)	36.18	35.58	35.46	34.08	31.36		
	3	Dynamic Modulus (MPa)	1798	1675	1285	1009	753.3		
		Phase Angle (Degrees)	36.75	35.94	35.16	32.95	29.97		
	$\overline{4}$	Dynamic Modulus (MPa)	2044	1884	1416	1079	785.3		
		Phase Angle (Degrees)	36.99	36.45	36.8	35.22	32.6		
	$\mathbf{1}$	Dynamic Modulus (MPa)	2413	2255	1752	1364	1005		
		Phase Angle (Degrees)	34.45	33.85	33.8	33.1	31.05		
	$\overline{2}$	Dynamic Modulus (MPa)	2217	2074	1595	1235	907.8		
8hr		Phase Angle (Degrees)	35.66	34.95	34.75	33.73	31.34		
	3	Dynamic Modulus (MPa)	N/A	N/A	N/A	N/A	N/A		
		Phase Angle (Degrees)	N/A	N/A	N/A	N/A	N/A		
	$\overline{4}$	Dynamic Modulus (MPa)	2198	2060	1601	1252	930		
		Phase Angle (Degrees)	35.2	34.53	34.15	32.96	30.32		

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

40° C (104 $^{\circ}$ F)							
WMA							
Aging Period	Spec.	Frequency (Hz)	1	0.5	0.2	0.1	0.01
	$\mathbf{1}$	Dynamic Modulus (MPa)	655.5	567	497.8	465.6	421.6
		Phase Angle (Degrees)	26.09	22.53	18.38	15.04	10.01
	$\overline{2}$	Dynamic Modulus (MPa)	579.8	508.4	448.4	422.9	390.9
0.5 _{hr}		Phase Angle (Degrees)	25.43	22.27	18.09	15.04	10.49
	3	Dynamic Modulus (MPa)	593.6	525.5	469.3	445.5	409.3
		Phase Angle (Degrees)	24.92	21.67	17.57	14.63	9.83
	$\overline{4}$	Dynamic Modulus (MPa)	626.9	548.6	484.6	456.4	413.5
		Phase Angle (Degrees)	25.87	22.44	18.4	15.48	10.12
	$\mathbf{1}$	Dynamic Modulus (MPa)	654.5	565	489.7	454.8	412
		Phase Angle (Degrees)	27.29	23.67	19.78	16.24	10.93
	$\mathbf{2}$	Dynamic Modulus (MPa)	644.6	563.7	496.3	469.6	424.3
2 ^{hr}		Phase Angle (Degrees)	25.38	22.23	18.22	15.65	10.3
	3	Dynamic Modulus (MPa)	662.6	573.4	493.9	456.7	397.5
		Phase Angle (Degrees)	28.07	24.6	20.27	17.13	11.08
	$\overline{4}$	Dynamic Modulus (MPa)	614.1	535.8	471.4	446.7	405.9
		Phase Angle (Degrees)	25.79	22.38	18.33	15.5	10.5
	$\mathbf{1}$	Dynamic Modulus (MPa)	696.1	586	491.1	447.3	375.8
		Phase Angle (Degrees)	29.45	26.56	22.58	19.59	12.53
	$\overline{2}$	Dynamic Modulus (MPa)	664.6	558.3	492.5	511.4	452.3
4hr		Phase Angle (Degrees)	28.86	26	21.83	17.49	10.85
	3	Dynamic Modulus (MPa)	634.3	552.1	481.1	451.2	410.8
		Phase Angle (Degrees)	27.03	23.97	20.17	17.13	11.7
	$\overline{4}$	Dynamic Modulus (MPa)	647.1	547.2	465.2	440.3	431.9
		Phase Angle (Degrees)	29.82	26.9	22.81	19.57	12.95
	$\mathbf{1}$	Dynamic Modulus (MPa)	824	696.2	586.1	533.2	448.2
		Phase Angle (Degrees)	28.87	26.18	22.63	19.66	13
	$\overline{2}$	Dynamic Modulus (MPa)	752.9	654	559.1	515.5	451
8hr		Phase Angle (Degrees)	28.91	25.96	21.85	19.03	12.31
	3	Dynamic Modulus (MPa)	N/A	N/A	N/A	N/A	N/A
		Phase Angle (Degrees)	N/A	N/A	N/A	N/A	N/A
	$\overline{4}$	Dynamic Modulus (MPa)	765.4	653	555.9	511	440.8
		Phase Angle (Degrees)	28	25.16	20.9	18.24	11.55

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

	4° C (39 $^{\circ}$ F)							
HMA								
Aging Period	ID	Frequency (Hz)	25	20	10	5	$\overline{2}$	
	$\mathbf{1}$	Dynamic Modulus (MPa)	18055	17654	16492	15323	13750	
		Phase Angle (Degrees)	8.19	8.59	9.56	10.62	12.2	
	$\overline{2}$	Dynamic Modulus (MPa)	16020	15648	14487	13327	11790	
0.5 _{hr}		Phase Angle (Degrees)	9.12	9.53	10.74	12.01	13.89	
	3	Dynamic Modulus (MPa)	15938	15641	14624	13578	12159	
		Phase Angle (Degrees)	8.24	8.68	9.74	10.86	12.56	
	$\overline{4}$	Dynamic Modulus (MPa)	15385	15013	13921	12814	11363	
		Phase Angle (Degrees)	9.28	9.67	10.82	12.09	13.95	
	$\mathbf{1}$	Dynamic Modulus (MPa)	15000	14657	13577	12487	11044	
		Phase Angle (Degrees)	9.48	9.73	10.95	12.44	14.06	
	$\overline{2}$	Dynamic Modulus (MPa)	16024	15694	14555	13402	11876	
2 _{hr}		Phase Angle (Degrees)	9.42	9.87	11.05	12.32	14.15	
	3	Dynamic Modulus (MPa)	15811	15398	14254	13175	11726	
		Phase Angle (Degrees)	9.07	9.57	10.61	11.74	13.41	
	$\overline{4}$	Dynamic Modulus (MPa)	16173	15765	14540	13322	11719	
		Phase Angle (Degrees)	9.43	10.03	11.31	12.58	14.5	
	$\mathbf{1}$	Dynamic Modulus (MPa)	17368	16947	15753	14521	12888	
		Phase Angle (Degrees)	8.72	9.4	10.31	11.44	13.01	
	$\overline{2}$	Dynamic Modulus (MPa)	15403	15100	14108	13132	11831	
4hr		Phase Angle (Degrees)	8.46	8.84	9.76	10.76	12.22	
	3	Dynamic Modulus (MPa)	16236	15907	14786	13687	12209	
		Phase Angle (Degrees)	8.61	9.31	10.11	11.21	12.81	
	$\overline{4}$	Dynamic Modulus (MPa)	17721	17327	16152	14975	13434	
		Phase Angle (Degrees)	7.79	8.23	9.22	10.21	11.66	

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

	4° C (39 $^{\circ}$ F)							
HMA								
Aging Period	ID	Frequency (Hz)	$\mathbf{1}$	0.5	0.2	0.1		
	1	Dynamic Modulus (MPa)	12498	11253	9599	8373		
		Phase Angle (Degrees)	13.59	15.12	17.49	19.4		
	$\overline{2}$	Dynamic Modulus (MPa)	10621	9447	7926	6866		
0.5 _{hr}		Phase Angle (Degrees)	15.49	17.28	19.95	21.97		
	3	Dynamic Modulus (MPa)	11097	9986	8526	7452		
		Phase Angle (Degrees)	14.03	15.66	18.19	20.14		
	$\overline{4}$	Dynamic Modulus (MPa)	10266	9180	7724	6682		
		Phase Angle (Degrees)	15.53	17.33	20.02	22.05		
	$\mathbf{1}$	Dynamic Modulus (MPa)	9948	8859	7493	6533		
		Phase Angle (Degrees)	15.59	17.34	19.83	21.71		
	$\overline{2}$	Dynamic Modulus (MPa)	10737	9659	8203	7237		
2 _{hr}		Phase Angle (Degrees)	15.67	17.33	19.75	21.57		
	3	Dynamic Modulus (MPa)	10602	9500	8049	7067		
		Phase Angle (Degrees)	14.77	16.41	19.35	20.74		
	$\overline{4}$	Dynamic Modulus (MPa)	10564	9420	7930	6930		
		Phase Angle (Degrees)	16.1	17.88	20.39	22.25		
	$\mathbf{1}$	Dynamic Modulus (MPa)	11666	10455	8920	7866		
		Phase Angle (Degrees)	14.47	16.03	18.26	19.95		
	$\overline{2}$	Dynamic Modulus (MPa)	10833	9824	8527	7625		
4hr		Phase Angle (Degrees)	13.5	14.9	17.08	18.77		
	3	Dynamic Modulus (MPa)	11102	9963	8536	7551		
		Phase Angle (Degrees)	14.23	15.56	17.97	19.81		
	$\overline{4}$	Dynamic Modulus (MPa)	12254	11089	9564	8420		
		Phase Angle (Degrees)	12.87	14.21	16.28	17.9		

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

	20° C (68 $^{\circ}$ F)							
HMA								
Aging Period	ID	Frequency (Hz)	25	20	10	5	$\overline{2}$	
	1	Dynamic Modulus (MPa)	8024	7632	6405	5357	4083	
		Phase Angle (Degrees)	21.07	21.78	24.24	26.57	29.48	
	$\overline{2}$	Dynamic Modulus (MPa)	7729	7430	6308	5246	4007	
0.5 _{hr}		Phase Angle (Degrees)	21.37	22.04	24.46	26.82	29.8	
	3	Dynamic Modulus (MPa)	7528	7177	6062	5029	3821	
		Phase Angle (Degrees)	21.88	22.62	25.25	27.89	31.23	
	$\overline{4}$	Dynamic Modulus (MPa)	8126	7733	6623	5588	4311	
		Phase Angle (Degrees)	20.25	20.95	23.28	25.61	28.67	
	1	Dynamic Modulus (MPa)	7761	7365	6287	5321	4139	
		Phase Angle (Degrees)	20.21	20.9	23.17	25.41	28.32	
	$\overline{2}$	Dynamic Modulus (MPa)	8851	8463	7295	6197	4880	
2 ^{hr}		Phase Angle (Degrees)	19.33	19.93	22.15	24.32	27.16	
	$\overline{3}$	Dynamic Modulus (MPa)	9036	8643	7484	6392	5064	
		Phase Angle (Degrees)	18.67	19.19	21.25	23.36	26.2	
	$\overline{4}$	Dynamic Modulus (MPa)	9227	8835	7676	6568	5191	
		Phase Angle (Degrees)	18.54	19.16	21.37	23.59	26.55	
	$\mathbf{1}$	Dynamic Modulus (MPa)	10311	9841	8622	7466	6060	
		Phase Angle (Degrees)	16.56	17.11	18.98	20.8	23.31	
	$\overline{2}$	Dynamic Modulus (MPa)	9397	9050	7924	6830	5509	
4hr		Phase Angle (Degrees)	17.61	18.2	20.14	22.21	24.99	
	3	Dynamic Modulus (MPa)	9469	9113	7960	6849	5486	
		Phase Angle (Degrees)	17.3	17.86	19.87	21.83	24.56	
	$\overline{4}$	Dynamic Modulus (MPa)	8592	8246	7218	6206	4942	
		Phase Angle (Degrees)	18	18.6	20.59	22.57	25.25	

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

20° C (68 $^{\circ}$ F)								
HMA								
Aging Period	ID	Frequency (Hz)	1	0.5	0.2	0.1		
	$\mathbf{1}$	Dynamic Modulus (MPa)	3245	2520	1782	1393		
		Phase Angle (Degrees)	31.45	33.1	34.12	33.7		
	$\overline{2}$	Dynamic Modulus (MPa)	3187	2482	1741	1359		
0.5 _{hr}		Phase Angle (Degrees)	31.74	33.29	34.27	33.91		
	$\overline{3}$	Dynamic Modulus (MPa)	3032	2353	1658	1281		
		Phase Angle (Degrees)	33.43	35.02	36.31	35.86		
	$\overline{4}$	Dynamic Modulus (MPa)	3462	2715	1913	1458		
		Phase Angle (Degrees)	30.8	32.59	34.16	34.16		
	$\mathbf{1}$	Dynamic Modulus (MPa)	3339	2651	1920	1503		
		Phase Angle (Degrees)	30.26	31.76	33.19	33.15		
	$\overline{2}$	Dynamic Modulus (MPa)	3975	3157	2275	1762		
2 _{hr}		Phase Angle (Degrees)	29.12	30.79	32.46	32.88		
	$\overline{3}$	Dynamic Modulus (MPa)	4162	3355	2439	1888		
		Phase Angle (Degrees)	28.25	30.18	32.53	33.31		
	$\overline{4}$	Dynamic Modulus (MPa)	4224	3361	2422	1862		
		Phase Angle (Degrees)	28.7	30.61	32.88	33.55		
	$\mathbf{1}$	Dynamic Modulus (MPa)	5099	4207	3191	2543		
		Phase Angle (Degrees)	25.2	27.01	29.35	30.26		
	$\overline{2}$	Dynamic Modulus (MPa)	4628	3768	2799	2158		
4hr		Phase Angle (Degrees)	27.08	29.27	31.23	32.44		
	3	Dynamic Modulus (MPa)	4570	3738	2775	2175		
		Phase Angle (Degrees)	26.57	28.43	30.75	31.91		
	$\overline{4}$	Dynamic Modulus (MPa)	4080	3330	2455	1936		
		Phase Angle (Degrees)	27.15	29.14	30.84	31.72		

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

40° C (104 $^{\circ}$ F) HMA								
HMA								
Aging Period	ID	Frequency(Hz)	25	20	10	5	$\overline{2}$	
	1	Dynamic Modulus (MPa)	1708	1594	1227	968.5	732.9	
		Phase Angle (Degrees)	35.65	35.02	34.07	31.36	27.76	
	$\overline{2}$	Dynamic Modulus (MPa)	2102	1933	1474	1150	851.9	
0.5 _{hr}		Phase Angle (Degrees)	35.13	34.64	34.58	32.74	29.7	
	3	Dynamic Modulus (MPa)	1605	1474	1068	778.6	514.5	
		Phase Angle (Degrees)	38.75	38.2	38.13	36.68	34.91	
	$\overline{4}$	Dynamic Modulus (MPa)	1929	1784	1353	1047	774	
		Phase Angle (Degrees)	35.79	35.28	34.99	32.94	29.57	
	$\mathbf{1}$	Dynamic Modulus (MPa)	2143	1987	1535	1199	888.2	
		Phase Angle (Degrees)	34.95	34.3	34.16	32.52	29.74	
	$\overline{2}$	Dynamic Modulus (MPa)	2425	2238	1711	1328	978.2	
2 _{hr}		Phase Angle (Degrees)	33.32	33.1	33.25	32.09	29.57	
	$\overline{3}$	Dynamic Modulus (MPa)	2470	2281	1747	1348	983.2	
		Phase Angle (Degrees)	33.96	33.8	34.1	33.32	31.16	
	$\overline{4}$	Dynamic Modulus (MPa)	2204	2040	1548	1190	860	
		Phase Angle (Degrees)	35.52	35.05	35.25	33.69	31.45	
	$\mathbf{1}$	Dynamic Modulus (MPa)	2834	2634	2051	1594	1159	
		Phase Angle (Degrees)	32.87	32.61	32.97	32.53	30.83	
	$\overline{2}$	Dynamic Modulus (MPa)	2315	2136	1610	1207	821.2	
4hr		Phase Angle (Degrees)	34.39	34.31	35.03	34.75	33.96	
	$\overline{3}$	Dynamic Modulus (MPa)	2732	2534	1957	1511	1099	
		Phase Angle (Degrees)	33.42	33.22	33.52	33.02	31.09	
	$\overline{4}$	Dynamic Modulus (MPa)	3149	2933	2286	1770	1275	
		Phase Angle (Degrees)	31.94	31.89	32.67	32.72	31.53	

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

40° C (104 $^{\circ}$ F)								
HMA								
Aging Period	ID	Frequency(Hz)	1	0.5	0.2	0.1	0.01	
	$\mathbf{1}$	Dynamic Modulus (MPa)	621.3	547.1	486.9	461.9	399.2	
		Phase Angle (Degrees)	24.38	21.09	16.57	14.16	10.76	
	$\overline{2}$	Dynamic Modulus (MPa)	710	609.1	523.6	485.4	433.7	
0.5 _{hr}		Phase Angle (Degrees)	26.41	22.79	19.18	16.83	9.87	
	3	Dynamic Modulus (MPa)	395.7	325.6	249.5	248.6	220	
		Phase Angle (Degrees)	32.3	28.75	24.51	19.74	13.47	
	$\overline{4}$	Dynamic Modulus (MPa)	644.2	554.5	460.2	404.8	371.6	
		Phase Angle (Degrees)	26.4	23.2	18.84	16.27	10	
	$\mathbf{1}$	Dynamic Modulus (MPa)	736.2	624.2	533.6	489.4	431.2	
		Phase Angle (Degrees)	26.79	23.39	19.71	16.66	10.46	
	$\overline{2}$	Dynamic Modulus (MPa)	806.1	687	583.7	535	466.1	
2 ^{hr}		Phase Angle (Degrees)	26.83	23.93	19.68	15.93	10.15	
	$\overline{3}$	Dynamic Modulus (MPa)	800.2	674.2	563.5	510.7	445.7	
		Phase Angle (Degrees)	28.75	25.91	21.77	19.48	11.4	
	$\overline{4}$	Dynamic Modulus (MPa)	700.6	590.1	490.9	437.7	328.5	
		Phase Angle (Degrees)	28.69	25.86	21.82	18.55	12.67	
	1	Dynamic Modulus (MPa)	937.2	785.5	646.5	577.3	467.6	
		Phase Angle (Degrees)	28.88	26.35	22.58	19.24	11.89	
	$\overline{2}$	Dynamic Modulus (MPa)	613.1	448.5	276.8	181.6	71.6	
4hr		Phase Angle (Degrees)	32.92	32.07	31.88	31.62	26.85	
	$\overline{3}$	Dynamic Modulus (MPa)	890	742.4	614.1	553.9	449.3	
		Phase Angle (Degrees)	28.88	25.98	22.43	19.27	11.91	
	$\overline{4}$	Dynamic Modulus (MPa)	1018	833.9	672.1	588.3	456.6	
		Phase Angle (Degrees)	29.86	27.46	23.81	20.29	11.97	

Table A-1: Dynamic Modulus and Phase Angle Output from AMPT Cont.

	WMA				
Aging Period	ID	Flow Number (Cycles)	Cycles to 5% Permanent Strain		
	$\mathbf{1}$	21	48		
0.5 _{hr}	$\overline{2}$	33	80		
	3	32	73		
	$\overline{4}$	32	76		
	$\mathbf{1}$	43	105		
2 _{hr}	$\overline{2}$	37	86		
	3	39	94		
	$\overline{4}$	32	84		
	$\mathbf{1}$	34	84		
4hr	$\overline{2}$	29	86		
	3	38	81		
	$\overline{4}$	37	96		
	$\mathbf{1}$	59	147		
8hr	$\mathbf{2}$	55	147		
	3	$\rm N/A$	N/A		
	$\overline{4}$	50	126		
		HMA			
Aging Period	ID	Flow Number	Cycles to 5% Permanent Strain		
	$\mathbf{1}$	20	50		
0.5 _{hr}	$\overline{2}$	29	73		
	3	31	74		
	$\overline{4}$	23	52		
	$\mathbf{1}$	26	67		
2 _{hr}	$\overline{2}$	35	89		
	3	44	104		
	$\overline{4}$	N/A	N/A		
	$\mathbf{1}$	50	139		
4hr	\overline{c}	43	105		
	\mathfrak{Z}	34	87		
	$\overline{4}$	39	102		

Table A-2: Flown Number and Cycles to 5% Permanent Strain Output from AMPT

$4^{\circ}C(39^{\circ}F)$								
HMA								
Aging Period	ID	CMOD (J/ms ²)	Peak Load (kN)					
	$0.5 - 3$	967.4	2.4					
0.5 _{hr}	$0.5 - 7$	1165.7	2.6					
	$0.5 - 9$	890.7	2.8					
	$2 - 2 - B$	893.5	2.9					
2 _{hr}	$2 - 3 - B$	675.3	2.8					
	$2-4-B$	943.6	2.8					
	$4 - 2 - B$	777.2	2.7					
4hr	$4 - 3 - A$	1178.5	2.4					
	$4 - 4 - B$	791.6	2.5					
	$8-3-A$	737.4	2.7					
8hr	$8-3-B$	659.1	2.7					
	$8-4-A$	603.6	2.7					
	4°C (39°F)							
		WMA						
			Peak Load					
Aging Period	ID	CMOD (J/ms ²)	(kN)					
0.5 _{hr}	$0.5 - 1 - A$	1466.5	2.4					
	$0.5 - 2 - A$	1058.3	2.6					
	$0.5 - 3 - A$	1342.5	2.5					
2hr	$2-1-A$ $2 - 2 - A$	1223.6 1087.3	2.6 2.3					
	$2 - 3 - A$	1094.2	2.4					
	$4 - 2 - A$	923.0	2.7					
4hr	$4 - 3 - A$	975.0	2.7					
	$4 - 4 - A$	794.2	2.3					
	$8-1-A$	800.7	2.7					
8hr	$8-2-A$	622.4	2.5					
	$8-3-A$	737.4	2.7					

Table A-3: CMOD and Peak Load Output from DC(t) Testing

20° C (68 $^{\circ}$ F)							
		HMA					
			Peak Load				
Aging Period	ID	CMOD (J/ms ²)	(kN)				
	$0.5 - 1$	572.9	2.6				
0.5 _{hr}	$0.5 - 2$	381.9	2.8				
	$0.5 - 4$	438.1	2.8				
	$2 - 1 - A$	514.5	3.0				
2 ^{hr}	$2 - 2 - A$	521.5	3.3				
	$2 - 5 - A$	397.9	2.6				
	$4 - 1 - A$	429.8	$2.8\,$				
4hr	$4-1-B$	448.4	2.9				
	$4 - 5 - A$	416.8	2.7				
	$8-1-A$	384.8	2.8				
8hr	$8 - 1 - B$	385.3	2.7				
	$8-5-B$	273.6	2.9				
	20° C (68 $^{\circ}$ F)						
		WMA					
			Peak Load				
Aging Period	ID	CMOD (J/ms ²)	(kN)				
	$0.5 - 1 - B$	383.0	2.6				
0.5 _{hr}	$0.5 - 3 - B$	465.1	2.7				
	N/A	N/A	N/A				
	$2 - 1 - B$	354.7	2.9				
2 ^{hr}	$2 - 2 - B$	429.6	2.7				
	$2 - 3 - B$	476.8	3.1				
	$4-1-B$	530.7	3.1				
4hr	$4 - 2 - B$	471.0	3.0				
	$4 - 3 - B$	384.5	3.0				
	$8 - 1 - B$	383.5	2.9				
8hr	$8-2-B$ $8-4-A$	429.2	2.7				
		467.2	2.9				

Table A-3: CMOD and Peak Load Output from DC(t) Testing Cont.

40° C (104 $^{\circ}$ F)			
HMA			
			Peak Load
Aging Period	ID	CMOD (J/ms ²)	(kN)
0.5 _{hr}	$0.5 - 5$	N/A	N/A
	$0.5 - 6$	254.1	3.2
	$0.5 - 8$	238.7	2.8
2hr	$2 - 3 - A$	236.6	2.9
	$2 - 4 - A$	266.9	2.7
	N/A	N/A	N/A
4hr	$4 - 3 - B$	311.6	3.0
	$4 - 4 - A$	193.1	2.7
	$4-5-B$	231.0	2.6
8hr	$8-4-B$	$\rm N/A$	N/A
	$8-5-A$	222.9	3.1
	$8 - 5 - B$	273.6	2.9
40°C (104°F)			
WMA			
			Peak Load
Aging Period	ID	CMOD (J/ms ²)	(kN)
0.5 _{hr}	$0.5 - 6 - A$	221.8	2.3
	N/A	N/A	N/A
	N/A	N/A	N/A
2hr	$2 - 6 - A$	243.0	2.6
	$2 - 6 - B$	182.3	2.7
	N/A	N/A	N/A
4hr	$4 - 1 - A$	217.1	2.8
	$4 - 4 - B$	224.2	2.5
	$4-5-B$	N/A	N/A
8hr	$8-3-B$	198.0	2.7
	$8-4-B$	N/A	N/A
			2.9

Table A-3: CMOD and Peak Load Output from DC(t) Testing

Appendix B: Raw Statistical Analysis Data

Table of Contents

B-1: Dynamic Modulus Statistical Analysis

 $B-1.1$: C Dynamic Modulus Analysis at 25Hz

 $B-1.3$: C Dynamic Modulus Analysis at 10Hz

The SAS System 19:15 Wednesday, October 27, 2010 12

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:15 Wednesday, October 27, 2010 13

The GLM Procedure

Dependent Variable: y10 y10

$B-1.5$: C Dynamic Modulus Analysis at 2Hz

$B-1.6$: C Dynamic Modulus Analysis at 1Hz

The SAS System 19:15 Wednesday, October 27, 2010 27

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:15 Wednesday, October 27, 2010 28

The GLM Procedure

Dependent Variable: y1 y1

$B-1.7$: C Dynamic Modulus Analysis at 0.5Hz

The SAS System 19:15 Wednesday, October 27, 2010 33

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:15 Wednesday, October 27, 2010 34

The GLM Procedure

Dependent Variable: y05 y05

$B-1.8$: C Dynamic Modulus Analysis at 0.2Hz

The SAS System 19:15 Wednesday, October 27, 2010 38

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:15 Wednesday, October 27, 2010 39

The GLM Procedure

Dependent Variable: y02 y02

$B-1.9$: C Dynamic Modulus Analysis at 0.1Hz

The SAS System 19:15 Wednesday, October 27, 2010 43

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:15 Wednesday, October 27, 2010 44

The GLM Procedure

Dependent Variable: y01 y01

 $B-1.10:$ 20°C Dynamic Modulus Analysis at 25Hz

 $B-1.11:$ 20°C Dynamic Modulus Analysis at 20Hz

The SAS System 19:34 Wednesday, October 27, 2010 12 The GLM Procedure Class Level Information Class Levels Values A 4 0.5 2 4 8 \overline{B} 2 + - Number of Observations Read 31 Number of Observations Used 31 The SAS System 19:34 Wednesday, October 27, 2010 13 The GLM Procedure Dependent Variable: y10 y10 Sum of
Squares Source **Source DF** Squares Mean Square F Value Pr > F Model 7 9439896.05 1348556.58 6.61 0.0002 Error 23 4690487.50 203934.24 Corrected Total 30 14130383.55 R-Square Coeff Var Root MSE y10 Mean 0.668057 6.424150 451.5908 7029.581 Source **Source DF** Type I SS Mean Square F Value Pr > F A 3 6312233.584 2104077.861 10.32 0.0002 B 1 1292206.881 1292206.881 6.34 0.0192
 $A*B$ 3 1835455.583 611818.528 3.00 0.0514 3 1835455.583 611818.528 Source Source DF Type III SS Mean Square F Value Pr > F A 3 6304590.509 2101530.170 10.30 0.0002 B 1 1183905.720 1183905.720 5.81 0.0244
 $A*B$ 3 1835455.583 611818.528 3.00 0.0514 3 1835455.583

 $B-1.13$: 20°C Dynamic Modulus Analysis at 5Hz

 $B-1.14$: 20°C Dynamic Modulus Analysis at 2Hz

 $B-1.15$: 20°C Dynamic Modulus Analysis at 1Hz

 $B-1.16$: 20°C Dynamic Modulus Analysis at 0.5Hz

The SAS System 19:34 Wednesday, October 27, 2010 32

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:34 Wednesday, October 27, 2010 33

The GLM Procedure

Dependent Variable: y05 y05

 $B-1.18$: 20°C Dynamic Modulus Analysis at 0.1Hz

The SAS System 19:34 Wednesday, October 27, 2010 42

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:34 Wednesday, October 27, 2010 43

The GLM Procedure

Dependent Variable: y01 y01

 $B-1.19$: C Dynamic Modulus Analysis at 25Hz

The SAS System 19:46 Wednesday, October 27, 2010 2

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:46 Wednesday, October 27, 2010 3

The GLM Procedure

Dependent Variable: y25 y25

 $B-1.20$: C Dynamic Modulus Analysis at 20Hz

The SAS System 19:46 Wednesday, October 27, 2010 7

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:46 Wednesday, October 27, 2010 8

The GLM Procedure

Dependent Variable: y20 y20

 $B-1.21$: C Dynamic Modulus Analysis at 10Hz

 $B-1.22$: C Dynamic Modulus Analysis at 5Hz

 $B-1.23$: C Dynamic Modulus Analysis at 2Hz

 $B-1.24$: C Dynamic Modulus Analysis at 1Hz

 $B-1.27$: C Dynamic Modulus Analysis at 0.1Hz

 $B-1.28$: C Dynamic Modulus Analysis at 0.01Hz

The SAS System 19:46 Wednesday, October 27, 2010 47

The GLM Procedure

Class Level Information

Number of Observations Read 31 Number of Observations Used 31

The SAS System 19:46 Wednesday, October 27, 2010 48

The GLM Procedure

Dependent Variable: y001 y001

B-2: Flow Number Analysis

The SAS System 18:27 Wednesday, October 27, 2010 2 The GLM Procedure Class Level Information Class Levels Values A 4 0.5 2 4 8 \overline{B} 2 + - Number of Observations Read 30 Number of Observations Used 30 The SAS System 18:27 Wednesday, October 27, 2010 3 The GLM Procedure Dependent Variable: yFN yFN Sum of Source the Source of the Squares of the Squares of Squares of the Square of Squares Mean Square F Value Pr > F Model 7 7936.800000 1133.828571 16.61 <.0001 Error 22 1502.166667 68.280303 Corrected Total 29 9438.966667 R-Square Coeff Var Root MSE yFN Mean 0.840855 19.68989 8.263190 41.96667 Source **Source DF** Type I SS Mean Square F Value Pr > F A 3 6823.948810 2274.649603 33.31 <.0001
B 3.59 0.0715 244.786401 244.786401 3.59 0.0715
868.064789 289.354930 4.24 0.0166 A*B 3 868.064789 289.354930 4.24 Source Source DF Type III SS Mean Square F Value Pr > F A 3 6132.410943 2044.136981 29.94 <.0001 B 1 273.282051 273.282051 4.00 0.0579
A*B 3 868.064789 289.354930 4.24 0.0166 289.354930

B-3: Cycles to 5% Permanent Deformation Analysis

The SAS System 18:27 Wednesday, October 27, 2010 7 The GLM Procedure Class Level Information Class Levels Values A 4 0.5 2 4 8 \overline{B} 2 + - Number of Observations Read 30 Number of Observations Used 30 The SAS System 18:27 Wednesday, October 27, 2010 8 The GLM Procedure Dependent Variable: yC5 yC5 Sum of Source the Source of the Squares of the Squares of Squares of the Square of Squares Mean Square F Value Pr > F Model 7 51523.08333 7360.44048 24.02 <.0001 Error 22 6742.41667 306.47348 Corrected Total 29 58265.50000 R-Square Coeff Var Root MSE yC5 Mean 0.884281 16.75252 17.50638 104.5000 Source **Source DF** Type I SS Mean Square F Value Pr > F A 3 45261.42857 15087.14286 49.23 <.0001
B 1740.70330 1740.70330 5.68 0.0262 1740.70330 1740.70330 5.68 0.0262
4520.95147 1506.98382 4.92 0.0092 A*B 3 4520.95147 1506.98382 4.92 Source Source DF Type III SS Mean Square F Value Pr > F A 3 41125.51190 13708.50397 44.73 <.0001 B 1 1885.54167 1885.54167 6.15 0.0213
A*B 3 4520.95147 1506.98382 4.92 0.0092 1506.98382

B-4: Disk Shaped Compact Tension Testing Statistical Analysis

 $B-4.1$: -2°C Fracture Energy Analysis

The SAS System 18:27 Wednesday, October 27, 2010 12

The GLM Procedure

Class Level Information

Number of Observations Read 24
Number of Observations Used 24 Number of Observations Used

The SAS System 18:27 Wednesday, October 27, 2010 13

The GLM Procedure

Dependent Variable: yDCT yDCT

The SAS System 18:27 Wednesday, October 27, 2010 17 The GLM Procedure Class Level Information Class Levels Values A 4 0.5 2 4 8 \overline{B} 2 + - Number of Observations Read 24 Number of Observations Used 24 The SAS System 18:27 Wednesday, October 27, 2010 18 The GLM Procedure Dependent Variable: yPL yPL Sum of Source and Sum of Squares of the Squares of Squares of Squares of Squares of Square Squar Mean Square F Value Pr > F Model 7 0.32666667 0.04666667 2.24 0.0861 Error 16 0.33333333 0.02083333 Corrected Total 23 0.66000000 R-Square Coeff Var Root MSE yPL Mean 0.494949 5.551445 0.144338 2.600000 Source Source Type I SS Mean Square F Value Pr > F A 3 0.06333333 0.02111111 1.01 0.4126
B 3 0.10666667 0.10666667 5.12 0.0379 B 1 0.10666667 0.10666667 5.12 0.0379 A*B 3 0.15666667 0.05222222 2.51 Source **Source DF** Type III SS Mean Square F Value Pr > F A 3 0.06333333 0.02111111 1.01 0.4126 B 1 0.10666667 0.10666667 5.12 0.0379
A*B 3 0.15666667 0.052222222 2.51 0.0959 0.05222222

The SAS System 18:27 Wednesday, October 27, 2010 22

The GLM Procedure

Class Level Information

The SAS System 18:27 Wednesday, October 27, 2010 23

The GLM Procedure

Dependent Variable: yDCT yDCT

The SAS System 18:27 Wednesday, October 27, 2010 27

The GLM Procedure

Class Level Information

 Number of Observations Read 23 Number of Observations Used 23

The SAS System 18:27 Wednesday, October 27, 2010 28

The GLM Procedure

Dependent Variable: yPL yPL

The SAS System 18:27 Wednesday, October 27, 2010 37

The GLM Procedure

Class Level Information

The SAS System 18:27 Wednesday, October 27, 2010 38

The GLM Procedure

Dependent Variable: yDCT yDCT

The SAS System 18:27 Wednesday, October 27, 2010 32

The GLM Procedure

Class Level Information

The SAS System 18:27 Wednesday, October 27, 2010 33

The GLM Procedure

Dependent Variable: yPL yPL

B-4.7: Hamburg Wheel Tracking Testing Analysis

References

AMEC Earth and Environmental "A Laboratory and Field Investigation to Develop Test Procedures for Predicting Non-Load Associated Cracking of Airfield HMA

Pavements." AAPTP 06-01 Phase II, 2010.

AASHTO R30. "Mixture Conditioning of Hot-Mix Asphalt"

AASHTO TP 62-03. "Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures."

AASHTO T 166-07. "Bulk Specific Gravity of Hot Mix Asphalt Using Surface Saturated-Dry Specimens"

AASHTO T 209 "Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt"

AASHTO 312-09. "Preparing and Determining the Density of Hot Mix Asphalt Specimens by Means of the Superpave Gyratory Compactor.

AASHTO T 324. "Hamburg Wheel-track Testing of Compacted Hot Mix Asphalt."

- ASTM D 7313-07a. "Standard Test Method for Determining Fracture Energy of Asphalt-Aggregate Mixtures Using the Disk-Shaped Compact Tension Geometry"
- Button, J.W., C. Estakhri, and A. Wmsatt. *A Synthesis of Warm-Mix Asphalt.* Texas Transportation Institute Report No. SWUTC/07/0-5597-1, 2007.
- D'Angelo, J, et al. *Warm-Mix Asphalt European Practice.* Washington D.C.: Federal Highway Administration Report No. FHWA-PL-08-007, 2008.
- Hurley, G.C., and B.D. Prowell. *Evaluation of Potential Processes for Use in Warm Mix Asphalt.* Auburn, AL: NCAT 05-06, 2006.
- Hurley, G.C., and B.D. Prowell. *Evaluation of Evotherm for Use in Warm Mix Asphalt.* Auburn, AL: NCAT No 06-02, 2006.
- IPC Global. "AMPT/SPT Asphalt Mixture Performance Tester." *IPC Global.* 2010. http://www.ipcglobal.com.au/images/stories/pdfs/ampt_6pp.pdf (accessed September 2010).
- Kristjánsdóttir, O, L Michael, S T Muench, and G Burke. "Assesing the Potential for Warm Mix Asphalt Technology Adoption." *Transportation Research Record No. 2040*, 2007.

LTPPBIND software, version 3.1 Beta, 2005.

- Middleton, B, and R W Forfylow. "Reducting Paving Emissions Using Warm Mix Asphalt Produced with the Double Barrel Green Process." *7th International Conference on Managing Pavement Assets.* Calgary, 2008.
- Rowe, Geoffrey M, Salman Hakimzadeh Khoee, Phillip Blankenship, and Kamyar C Mahboub. "Evaluation of Aspects of E* Test by Using Hot-Mix Asphalt Specimens with Varying Void Contents." *Transportation Research Record No. 2127*, 2009: 164-172.

Vita

Thomas Martin Clements

Personal Information Born: Baptist Hospital East, Louisville, Kentucky, September 7, 1987.

Education Bachelor of Science, Civil Engineering, University of Kentucky, Lexington, KY. May, 2009.

Professional Positions Held Engineer in Training, Kentucky Transportation Cabinet KY, 2010-Present Research Assistant, Asphalt Institute, Lexington, KY, 2009-2010 Engineering Intern, Kentucky Transportation Cabinet, Lexington, KY 2006-2009

